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Abstract

Following the financial crisis of 2008, banks and insurers became aware of the importance
of taking into account counterparty risk in the valuation of transactions on over-the-counter
markets resulting in the calculation of the credit valuation adjustment (CVA). Subsequently,
other risks that were previously not taken into account gradually began to become a discussion
of interest for banks and insurers, notably the question of the cost associated with liquidity :
the funding valuation adjustment (FV A) but also the cost of capital with the capital valuation
adjustment (KV A) and the cost linked to the deposit of an initial margin in collateralized
contracts : the margin valuation adjustment (MVA). The computation of XV A which is a
generic name for X-Valuation Adjustments is generally associated with fairly high computa-
tional costs and the banking and insurance industries are constantly looking for new numerical
methods to reduce this cost in order to be able to estimate these quantities consistently with an
acceptable computation time. In a risk management context, banks and insurers, after having
evaluated the XV As, must be able to proactively manage the risks associated with these value
adjustments, whether through hedging instruments or by using strategies to mitigate these
risks.

In the first part of this dissertation, a mathematical framework for the calculation of certain
XV As is presented, introducing the notion of Exposure. The CV A is calculated for different
types of european or bermudan financial products across various asset classes. For this, the
classical Monte-Carlo method or its american variant are used. The impact of the Wrong Way
Risk (WWR) in XV A computations is also illustrated through multiple examples.

In a second part, different machine learning algorithms are introduced to overcome the
principal weaknesses of the classical Monte-Carlo : the computational time due to the nested
Monte-Carlo and the curse of dimensionnality. These algorithms will be based on the different
representations of the XVAs whether from a probabilistic or a partial differential equation
(PDE) point of view.

In the last part, a mechanism to mitigate counterparty credit risk is presented. For this, a
dynamic hedging method called Mean-Variance Minimization is used. This hedging method is
notably illustrated using an application on the counterparty risk on various financial instruments
in the financial market but also on a stop-loss contract in the reinsurance market. Finally, a
static hedging method based on the expected utility theory for hedging the counterparty risk
of a reinsurer is also studied through the determination of optimal reinsurance and hedging
contracts.

Keywords: XVA, Wrong Way Risk, Monte-Carlo, Wrong Way Measure, Gaussian Process
Regression, PDE, BSDE, Neural Networks, Deep XVA Solver, CDS, Quadratic Hedging

0Some part of the code used in this dissertation are available on my GitHub page : https://github.com/
SamyMekk.

https://github.com/SamyMekk
https://github.com/SamyMekk


Résumé

Suite à la crise financière de 2008, les banques et les assureurs ont pris conscience de
l’importance de prendre en compte le risque de contrepartie dans l’évaluation des transac-
tions sur les marchés de gré à gré, ce qui a conduit au calcul de la valeur d’ajustement de crédit
(CVA). Par la suite, d’autres risques, qui n’étaient pas pris en compte auparavant, ont progres-
sivement commencé à susciter l’intérêt des banques et des assureurs, notamment la question du
coût associé à la liquidité : la valeur d’ajustement de liquidité (FV A), mais également celle liée
au capital avec la valeur d’adjustement de capital (KV A) et celle liée au coût de dépôt d’une
marge initiale dans les contrats collatéralisés (MVA). Le calcul des X-valeurs d’ajustement
(XV As) est généralement associé à des coûts de calcul assez élevés, et les industries bancaire
et assurantielle cherchent constamment de nouvelles méthodes numériques pour réduire ces
coûts afin de pouvoir estimer ces quantités de manière cohérente avec un temps de calcul ac-
ceptable. Dans un contexte de gestion des risques, les banques et les assureurs, après avoir
évalué les XV As, doivent être en mesure de gérer de manière proactive les risques associés à
ces ajustements de valeur, que ce soit par le biais d’instruments de couverture ou en utilisant
des stratégies visant à atténuer ces risques.

Dans une première partie de ce mémoire, un cadre mathématique pour le calcul de certaines
XV As est présenté, introduisant la notion d’Exposure. La CV A est calculée pour différents
types de produits financiers européens ou bermudéens sur diverses classes d’actifs. Pour cela, la
méthode classique de Monte-Carlo ou sa variante américaine sont utilisées. L’impact du Wrong
Way Risk (WWR) dans le calcul de XV As est également illustré à travers plusieurs exemples.

Dans une deuxième partie, différents algorithmes d’apprentissage supervisé sont introduits
pour surmonter les principales faiblesses du Monte-Carlo classique : le temps de calcul dû au
Monte-Carlo imbriqué et le problème de la dimensionnalité . Ces algorithmes seront basés sur
différentes représentations des XVAs, que ce soit d’un point de vue probabiliste ou à partir
d’équations aux dérivées partielles (EDP).

Dans la dernière partie, un mécanisme pour atténuer le risque de contrepartie sera présenté.
Pour cela, une méthode de couverture dynamique appelée Minimisation de la Variance Moyenne
est utilisée. Cette méthode de couverture est notamment illustrée à l’aide d’une application au
risque de contrepartie sur divers instruments financiers mais également dans le cadre d’un con-
trat stop-loss sur le marché de la réassurance. Enfin, une méthode de couverture statique basée
sur la théorie de l’espérance d’utilité pour la couverture du risque de contrepartie d’un réas-
sureur est également étudiée à travers la détermination des contrats optimaux de réassurance
et de couverture.

Mots-clés: XVA, Wrong Way Risk, Monte-Carlo, Mesure Wrong Way, Régression par Pro-
cessus Gaussiens, EDP, EDSR, Réseaux de Neurones, Deep XVA Solver, CDS, Couverture
Quadratique

0La plupart des codes utilisés dans ce mémoire sont disponibles sur ma page GitHub : https://github.
com/SamyMekk.

https://github.com/SamyMekk
https://github.com/SamyMekk


Executive Summary

Context
Following the financial crisis of 2008, banks and insurers became aware of the importance of
taking into account counterparty risk in the valuation of transactions on over-the-counter mar-
kets resulting in the computation of the Credit Valuation Adjustment (CVA). Subsequently,
other risks that were previously not taken into account gradually began to become a discussion
of interest for banks and insurers, notably the question of the cost associated with liquidity :
the Funding Valuation Adjustment (FV A) but also the cost of capital with the Capital Valua-
tion Adjustment (KV A) and the cost linked to the deposit of an initial margin in collateralized
contracts : the Margin Valuation Adjustment (MVA). The calculation of X-Valuation Adjust-
ments (XV A) is generally associated with fairly high computational costs and the banking and
insurance industries are constantly looking for new numerical methods to reduce this cost in
order to be able to estimate these quantities consistently with an acceptable calculation time.
In a risk management context, banks and insurers, after having evaluated the XV As, must be
able to proactively manage the risks associated with these value adjustments, whether through
hedging instruments or by using strategies to mitigate these risks.

Approach of this dissertation
This dissertation is structured around two major themes. The first focuses on the pricing of
XVAs, transitioning from classic numerical methods based on Monte-Carlo approaches to su-
pervised learning algorithms, namely deep neural networks and gaussian process regressions.
Several numerical illustrations are provided to assess the relevance of these methods. Special
attention is given to the modelling of Wrong Way Risk and to measuring its impact on the val-
uation of certain XV As for common financial products. The second theme of this dissertation
focuses on the hedging of counterparty exposure after having evaluated it. Following a brief
definition of the characteristics of a Credit Default Swap (CDS), a dynamic hedging strategy
based on this product will be analyzed to minimize the hedging error, with an application to
reinsurance counterparty risk. Finally, a static hedging approach also for a reinsurer’s coun-
terparty risk, based on expected utility theory, will be examined. In this context, the optimal
reinsurance and hedging contracts for an insurer will be determined.

XVA Pricing
In order to be able to value the XV As, it is necessary to define a mathematical framework
associated with these adjustment values. This dissertation 1 will be based on the following

1There is no absolute consensus in the literature (except for CV A) in the formulas which characterize the
XVAs.
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representation of the XV As where we give the main notations : RC the recovery rate, 1
Bt

the
discount factor at time t, Vt the portfolio value at t and τC the default time of C. 2

CV A0 = (1−RC)EQ[1τC≤T (V
C
τ )+

1

BτC
|G0].

FV A0 = EQ[1(τC∧τA)≤T

∫ T

0

1

Bu

(sb(u)(Vu)
+ − sl(u)(Vu)−)du|G0].

MV A0 =

∫ T

0

f(s)EQ[
1

Bs

IM(s)|G0]ds.

The computation of CV A0 which is the most fundamental XV A for banking and financial
institutions is generally carried out using a reformulation of the previous equation of the CV A
(noting G(s) = Q(τC > s) = e−

∫ s
0 h(u)du where h is called hazard rate and assuming the

independence between the value of the portfolio and the default time of the counterparty)
given by :

CV A0 = −(1−RC)

∫ T

0

EQ[
1

Bs

(Vs)
+]dG(s).

This representation incorporates the counterparty’s probability of default through the term
dG(s), as well as the concept of exposure to default, captured by the exposure profile. The
exposure profile is represented by the function EPE, defined as EPE(t) = EQ

[
1
Bt
(Vt)

+
]
.

Discretizing over a temporal grid 0 = t0 < t1 < · · · < tN = T allows for the following
approximation of CV A0 :

CV A0 ≈ −
N−1∑
i=0

(1−RC)EPE(ti)(G(ti+1)−G(ti)).

This formula 3 emphasizes the 3 main components of credit risk under Basel regulations :

• The loss given default represented by the term 1−RC .

• The exposure at default at time ti represented by the term EPE(ti).

• The default probability between ti and ti+1 represented by the term G(ti+1)−G(ti).

Classic methods for XVA pricing

Due to the mathematical structure of the XV As we have introduced, Monte-Carlo methods
appear to be the most suitable for evaluating the XV As. However, calculating the exposure
profile is particularly time-consuming because it often requires nested Monte-Carlo simulations,
as in many cases, the price of the financial product or portfolio Vt at time t is itself evaluated
using a Monte-Carlo method. When a closed formula is allowed for the calculation of Vt, we can
limit ourselves to a simple Monte-Carlo procedure. This dissertation begins by illustrating this
case with various financial products, ranging from european options and forward contracts in a
Black-Scholes (B−S) model to interest rate swaps under Hull & White and G2++ models. This

2The main notations used in this executive summary are introduced in the chapter 2 of this dissertation :
XVA Mathematical framework and are recalled in the last section Notations of this executive summary.

3Other approximations could be considered like the trapezoidal rule for instance.
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thesis then explores the case of options that can be exercised before maturity, where valuation
becomes more complex and requires nested Monte-Carlo simulations. To address this, the
dissertation examines the classic Least Square Monte-Carlo (LSMC ) method for calculating
efficient exposure profiles. This method, based on a dynamic programming approach, delivers
particularly compelling results as it enables relatively fast computations of exposure profiles
without the need for a computationally prohibitive nested Monte-Carlo procedure. LSMC
remains the preferred method for banking institutions in their calculation of exposure profiles.
Finally, this thesis illustrates the impact of netting agreements between two counterparties on
the overall value of CV A and demonstrates how the netting principle can lead to a significant
reduction in overall CV A.

Incorporating Wrong Way Risk

The assumption of independence between default exposure and counterparty default risk is
generally far too crude and appropriate modelling of this dependence is generally necessary to
better capture the true impact of Wrong Way Risk (WWR) on XV As. This thesis proposes
to study 2 modelling approaches, one based on a dynamic modelling of the default intensity
denoted by λ = (λt)t∈[0,T ] a stochastic process and the other based on a new probability mea-
sure called Wrong Way Measure which captures directly the Wrong Way Risk through a drift
adjustment.
The CV A formula without the independence assumption is calculated as follows :

CV A0 = −(1−RC)

∫ T

0

EQ[
1

Bs

(Vs)
+|τC = s]dG(s).

Under the hypothesis of a Cox setup, that is to say that the process S = (St)t∈[0,T ] = Q(τC >

t|Ft) can be written as St = e−
∫ t
0 λsds, we can then deduce a more general form of CV A0 by

taking into account the Wrong Way Risk given by :

CV A0 = −(1−RC)EQ
∫ T

0

[
(Vs)

+

Bs

λsSs

h(s)G(s)
]dG(s).

EPE Profile and corresponding CV A0 of an IRS in the Hull & White model under WWR
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Another approach based on the definition of a new probability measure is proposed by
defining the measure QWWR,t whose Radon-Nikodym density M t

s is given by:

M t
s =

dQWWR,t

dQ
|Fs =

EQ[λtSt

Bt
|Fs]

EQ[λtSt

Bt
]
.

Using this new probability measure, CV A0 can be computed based on an appropriate exposure
profile. Therefore, it is crucial to simulate (Vt)

+ under this new probability measure. In this
thesis, this is achieved through a deterministic drift adjustment, which allows for analytical
formulas under specific dynamics of Vt. The methodology is evaluated by using ground truth
2D full Monte-Carlo approximation for EPE and shows very good results.

Supervised Learning methods contribution for XVA pricing

This dissertation offers an in-depth study of supervised learning methods and their use in the
context of the valuation of XV As, particularly in relation to the limitations of classic Monte-
Carlo methods.

Gaussian Process Regression

This thesis presents the Gaussian Process Regression (GPR) method for derivatives portfolio
modelling, with applications for efficient expected exposure profile and CV A0 computation.
The main advantage of this method is its ability to efficiently learn price surfaces from a very
small set of training data. However, it requires training data pairs (X, Y ), where the output la-
bels Y may be noisy, for example, when prices are estimated using Monte-Carlo methods, which
can make the approach less robust. This dissertation highlights the computational capabilities
of GPR, both in the pricing of derivative products and in the valuation of insurance products
such as Guaranteed Minimum Maturity Benefit (GMMB) contracts, while also addressing the
method’s limitations. An application of GPR for learning price surfaces at various times during
the lifetime of a portfolio is presented, combined with a standard Monte-Carlo procedure to
overcome the nested Monte-Carlo issue. This approach is applied to a portfolio of european
derivatives under the B − S model and a portfolio of swaps under the Hull & White model,
showing great accuracy in the computation of the EE profile and the associated CV A0. There-
fore, when combined with a simple Monte-Carlo loop, Gaussian Process Regression appears to
be a promising candidate for overcoming the nested Monte-Carlo challenge, as long as accurate
surface prices can be learned at each discretization point 0 = t0 < t1 < · · · < tN = T .

Neural Networks

A probabilistic approach :

This dissertation examines the probabilistic formulation of XV A as conditional expectation,
which, similar to Gaussian Process Regression, allows for efficient learning of price surfaces. Ad-
ditionally, it leverages one of the key properties of conditional expectation—its role as a solution
to a minimization problem. This property enables the avoidance of simulating prices to learn
these surfaces, offering a computational advantage over Gaussian Process methods. Several ex-
amples of the Deep Conditional Expectation algorithm are presented in the thesis, particularly
for an efficient calculation of the dynamic initial margin (DIM) and the associated MVA0

for an interest rate swap. Normally, this task requires a nested Monte-Carlo procedure due to
the complexity of the initial margin profile. Once the neural network is trained, the computa-
tional cost is almost negligible, whereas the computation of DIM using Monte-Carlo becomes
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significantly more time-consuming, making nested Monte-Carlo impractical in an XV A engine
where fast computations are crucial. The Deep Conditional Expectation Solver demonstrates
excellent performance in this context, achieving relatively low error in the calculation of both
the DIM profile and MVA0.

A PDE approach :

This dissertation also explores the formulation of XV As as solutions of partial differential equa-
tions in a framework where default times are modelled by exponential variables with stochastic
intensities. The solutions of these partial derivatives are then estimated using their intrinsic
link with backward stochastic differential equations (BSDEs) which are very classic in finance
where we give the payoff of an option at the terminal date. The idea of the method consists
of rewriting the initial problem as a stochastic control problem where we seek to minimize a
criterion allowing us to solve the PDE using Deep Learning. The main advantage of the Deep
XVA Solver method lies in its ability to solve very high-dimensional problems compared to
classic Monte-Carlo methods. Applications of this method are presented for the calculation of
the expected exposure profile of a european option on a basket call option on d = 100 assets
and show great accuracy on computing the EE profile and associated XV As.

Exposure Calculation of a forward contract (left) and a basket option on d = 100 assets
(right) both under B − S

Counterparty Exposure Hedging
This thesis addresses the problem of mean-variance minimization, specifically finding a self-
financing portfolio strategy in CDS for the process (CDSt)t∈[0,T ], which minimizes the following
quantity:

min
C0,(ξt)t∈[0,T ]

EQ

[(
(1−RC)(VτC )

+1τC<T −
(
C0 +

∫ T

0

ξtd(CDS)t

))2
]
.

The insurer’s loss is modelled using the process L = (Lt)t≥0, defined as follows: 4

Lt =
Nt∑
i=1

Zi.

4The model considered is detailed in chapter 7 of the dissertation: Towards Methods to Hedge CCR.
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where:

• N is a counting process such that Nt =
∑+∞

n=1 1Tn≤t, with (Tn)n∈N representing the arrival
times of the claims.

• (Zn)n∈N are strictly positive random variables modelling the amount of claims.

• Vt = EQ
[
e−r(T−t)(LT −K)+

∣∣Gt].

Comparison of 2 hedging strategies in order to hedge the exposure on a stop-loss contract

This dissertation also proposes the study of a static hedging approach for an insurer subject
to the counterparty risk of a reinsurer. The insurer seeks to find optimal reinsurance and
hedging contracts that allow him to maximize his expected utility. Several cases are defined
and a study is proposed in the case of an utility function of type CARA 5.

Conclusion
Global conclusion

This dissertation provided an overview of numerical methods, transitioning from classical
approaches to recent supervised learning methods, addressing the challenges associated with
the computation of XV As.

Firstly, a specific mathematical framework, inspired by academic literature, was proposed
for the calculation of various XV As and formed the foundation of this dissertation. From
this framework, numerous illustrations were provided for the calculation of counterparty risk
across different types of financial products, including european equity options and interest rate
swaps under the G2 + + and Hull & White models, as well as more exotic products such as
bermudan options, evaluated through a put and a swaption using the Least Square Monte-Carlo
method. This dissertation also emphasized the significant impact of Wrong Way Risk in the
valuation of XV As by presenting two modelling approaches based on research articles. One of
these approaches incorporates a change of measure, allowing the integration of WWR into the
pricing of CV A under the Wrong Way Measure.

Secondly, this dissertation demonstrated the relevance of supervised learning algorithms for
the calculation of XV As, particularly in overcoming the classical issues of the nested Monte-
Carlo approach. A detailed study was conducted on the contribution of Gaussian Process

5CARA means Constant Absolute Risk Aversion and is such that u(x) = −e−αx where α is the absolute risk
aversion parameter.
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Regression, highlighting both the strengths and limitations of the algorithm. It was shown how
combining Gaussian Process Regression with classical Monte-Carlo methods could efficiently
learn the expected exposure profile of european derivatives or interest rate swap portfolios,
thereby avoiding the need for nested Monte-Carlo procedures. An important part of this dis-
sertation was also devoted to the study of fully connected deep neural networks and their
usefulness in the calculation of XV As. Two algorithms were studied : one which was based on
the PDE representation of XV As called Deep XVA Solver where we computed the expected
profile of a very high dimensional european derivative which showed that it can overcome the
curse of dimensionality and the other based on their probabilistic representation called Deep
Conditional Expectation Solver where an efficient calculation of MVA0 was computed avoiding
also the nested Monte-Carlo procedure.

Finally, this dissertation focused on the hedging aspects of counterparty risk. A dynamic
hedging approach was studied using quadratic hedging methods, with an investment in a bench-
mark hedging instrument for counterparty risk : Credit Default Swaps (CDS). An application
to reinsurance counterparty risk in a stop-loss contract was presented, where we derived an
analytical formula for the optimal investment strategy in the CDS to minimize the tracking
error. A static approach, based on expected utility theory, was also proposed. In this approach,
an insurer seeks to maximize the expected utility of its wealth by subscribing to a reinsurance
contract and a hedging instrument to guard against the reinsurer’s potential default. The
insurer then determines the optimal contracts to solve his optimization problem.

In conclusion, this dissertation explored various quantitative aspects related to the man-
agement of XV As, which have become a critical topic for banks and insurers since the 2008
financial crisis. The work highlighted the computational challenges of pricing XV As and pro-
posed new efficient numerical methods to address these challenges. Finally, it introduced key
concepts in counterparty risk hedging, using both dynamic and static approaches.

Potential further research

• In addition to calculating the average exposure profile (EE), the financial industry is also
interested in computing the exposure profile at a given percentile α ∈ [0, 1], defined as

PFEα
t = inf{y : Q((Vt)

+ ≤ y) ≥ α}.

This complementary measure echoes the definition of Value-at-Risk and recently super-
vised learning methods have emerged for the calculation of these risk measures based
on a dual representation of the Value-at-Risk and Expected Shortfall as minimization
problems as introduced in the article Learning Value-at-Risk and Expected Shortfall by
Barrera, Crépey, Gobet, Nguyen and Saadeddine.

• Supervised learning algorithms are also currently studied for the valuation of high-dimensional
bermudan options as introduced in the article Deep Optimal Stopping by Becker, Cherid-
ito, Jentzen where the optimal exercise time is learned from data samples.

• Neural networks can also be a great tool for hedging objectives as introduced in the
article Deep Quadratic Hedging by Gnoatto, Lavagnini and Picarelli where quadratic
hedging strategies are learned based on the Deep BSDE Solver. Recently, methods based
on reinforcement learning have also emerged.
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Notations
XVA X Valuation Adjustment

CVA Credit Valuation Adjustment

FVA Funding Valuation Adjustment

MVA Margin Valuation Adjustment

KVA Capital Valuation Adjustment

Vt Portfolio value at time t

1
Bt

Discount factor at time t

τC Default time of counterparty C

RC Recovery Rate

G = (Gt)t≥0 Augmented filtration with the information of default time τC

F = (F t)t≥0 Largest subfiltration of G preventing the default time τC

sB Spread of borrowing

sL Spread of lending

f funding spread between the collateral rate and the risk free rate

IM Initial Margin

DIM Dynamic Initial Margin

EE Expected Exposure

EPE Expected Positive Exposure

G Survival probability function of τC

GMMB Guaranteed Minimum Maturity Benefit

PDE Partial Differential Equation

WWR Wrong Way Risk

B-S Black-Scholes

IRS Interest Rate Swap

MC Monte-Carlo

LSMC Least Square Monte-Carlo

BSDE Backward Stochastic Differential Equation

CDS Credit Default Swap

PFE Potential Future Exposure

viii



Note de Synthèse

Contexte
Suite à la crise financière de 2008, les banques et les assureurs ont pris conscience de l’importance
de prendre en compte le risque de contrepartie dans l’évaluation des transactions sur les marchés
de gré à gré, ce qui a conduit au calcul de la valeur d’ajustement de crédit (CVA). Par la suite,
d’autres risques, qui n’étaient pas pris en compte auparavant, ont progressivement commencé
à susciter l’intérêt des banques et des assureurs, notamment la question du coût associé à
la liquidité : la valeur d’ajustement de liquidité (FV A), mais également celle liée au capital
avec la valeur d’adjustement de capital (KV A) et celle liée au coût de dépôt d’une marge
initiale dans les contrats collatéralisés (MVA). Le calcul des X-valeurs d’ajustement (XV As)
est généralement associé à des coûts de calcul assez élevés, et les industries bancaire et assur-
antielle cherchent constamment de nouvelles méthodes numériques pour réduire ces coûts afin
de pouvoir estimer ces quantités de manière cohérente avec un temps de calcul acceptable. Dans
un contexte de gestion des risques, les banques et les assureurs, après avoir évalué les XV As,
doivent être en mesure de gérer de manière proactive les risques associés à ces ajustements de
valeur, que ce soit par le biais d’instruments de couverture ou en utilisant des stratégies visant
à atténuer ces risques.

Approche du mémoire
Ce mémoire s’articule autour de deux grands thèmes. Le premier thème concerne la valori-
sation des XVAs, en passant des méthodes numériques classiques basées sur des approches
Monte-Carlo à des algorithmes d’apprentissage supervisé tels que les réseaux de neurones pro-
fonds et les régressions par processus gaussien. De multiples illustrations numériques sont
proposées pour étudier la pertinence de ces méthodes. Une attention particulière est portée à
la modélisation du Wrong Way Risk et à son impact sur la valorisation des XVAs pour des pro-
duits financiers courants. Le deuxième thème de ce mémoire se concentre sur la couverture de
la CVA. Après une brève définition des caractéristiques d’un Credit Default Swap (CDS ), une
stratégie dynamique de couverture basée sur ce produit est étudiée afin de minimiser l’erreur
de couverture, avec une application au risque de contrepartie sur le marché de la réassurance.
Enfin, une approche statique de couverture du risque de contrepartie d’un réassureur, basée sur
la théorie de l’espérance d’utilité, est également étudiée. Cette approche permet de déterminer
les contrats de réassurance et de couverture optimaux pour un assureur.

Valorisation des XVAs
Afin de pouvoir valoriser les XV As, il faut définir un cadre mathématique associé à ces valeurs
d’ajustments. Ce mémoire 6 va principalement se baser sur la représentation suivante des

6Il n’y a pas de consensus absolu (hors CV A) sur les formules qui caractérisent les XVAs.
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XV As dont on donne les principales notations : RC le taux de récupération, 1
Bt

le facteur
d’actualisation en t, Vt la valeur du portefeuille en t et τC le temps du défault de C. 7

CV A0 = (1−RC)EQ[1τC≤T (V
C
τ )+

1

BτC
|G0].

FV A0 = EQ[1(τC∧τA)≤T

∫ T

0

1

Bu

(sb(u)(Vu)
+ − sl(u)(Vu)−)du|G0].

MV A0 =

∫ T

0

f(s)EQ[
1

Bs

IM(s)|G0]ds.

Le calcul de la CV A0 qui est la XV A la plus fondamentale pour les établissements bancaires et
financiers est en général réalisé via une reformulation de l’équation de la CV A précédemment
donnée (en notant G(s) = Q(τC > s) = e−

∫ s
0 h(u)du où h est appelé taux de hasard et en

supposant l’indépendance entre la valeur du portefeuille et le défaut de la contrepartie) par :

CV A0 = −(1−RC)

∫ T

0

EQ[
1

Bs

(Vs)
+]dG(s).

Cette représentation fait intervenir les probabilités de défaut de la contrepartie à travers le
terme dG(s) ainsi que la notion d’exposition au défaut à travers la notion de profil d’exposition
qui est la fonction EPE telle que EPE(t) = EQ[ 1

Bt
(Vt)

+]. La discrétisation sur une grille
temporelle 0 = t0 < t1 < . . . < tN = T permet alors d’approximer CV A0 comme suit :

CV A0 ≈ −
N−1∑
i=0

(1−RC)EPE(ti)(G(ti+1)−G(ti)).

Cette formule permet de mettre en lumière les 3 composantes principales du risque de crédit
au titre de la réglementation bâloise :

• La perte en cas de défault caractérisée par le terme 1−RC .

• L’exposition au défaut en ti caractérisée par le terme EPE(ti).

• La probabilité de défaut entre ti et ti+1 caractérisée par le terme G(ti+1)−G(ti).

Méthodes classiques de valorisation de XVAs

De par la structure mathématique des XV As que nous avons introduite, les méthodes de
Monte-Carlo apparaissent comme les plus adaptées pour évaluer les XV As. Cependant, le
calcul du profil d’exposition est particulièrement coûteux en terme de temps d’éxécution car il
nécessite de calculer des simulations de Monte-Carlo imbriqués étant donné que dans la plupart
des cas le prix du produit financier/portefeuille Vt à l’instant t est lui même évalué par une
procédure Monte-Carlo. Lorsqu’une formule fermée est permise pour le calcul de Vt, on peut
alors juste se resteindre à une simple procédure Monte-Carlo et ce mémoire commence par
illustrer ce cas là pour des produits financiers variés allant d’options européennes et contrats à
terme dans un modèle Black − Scholes à des swaps de taux d’intérêt dans des modèles Hull
& White et G2 + +. Ce mémoire étudie ensuite le cas d’options dont l’exercice peut avoir lieu

7Les notations utilisées sont introduites dans le chapitre 2 du mémoire : XVA Mathematical framework et
sont rappelées dans la section "Notations" de cette note de synthèse
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avant la maturité là où la valorisation est plus complexe et nécessite l’utilisation de simulations
Monte-Carlo imbriquées. Pour se faire, ce mémoire étudie la méthode classique de Least Square
Monte-Carlo pour le calcul des profils d’exposition. Cette méthode basée sur une méthode de
programmation dynamique apporte des résultats particulièrement intéressants et reste encore
la méthode privilégiée par les institutions bancaires pour leur calcul des profils d’expositions.
Enfin, ce mémoire illustre l’impact du netting agreement entre 2 contreparties sur la valeur
globale de la CV A.

Incorporation du Wrong Way Risk

L’hypothèse d’indépendence entre l’exposition au défaut et le risque de défault de la contrepar-
tie est en général bien trop grossière et une modélisation appropriée de cette dépendance est
en général nécessaire pour mieux capturer le vrai impact du Wrong Way Risk (WWR) sur les
XV As. Ce mémoire propose d’étudier 2 approches de modélisation, l’une basée sur une mod-
élisation dynamique de l’intensité de défaut notée λ = (λt)t∈[0,T ] par un processus stochastique
et l’autre basée sur une évaluation de la CV A sans Wrong Way Risk apparent mais incorporé
dans une nouvelle mesure de probabilité appelée Wrong Way Measure à travers un ajustement
de dérive.
La formule de la CV A en omettant l’hypothèse d’indépendance peut alors être calculée de la
manière suivante :

CV A0 = −(1−RC)

∫ T

0

EQ[
1

Bs

(Vs)
+|τC = s]dG(s).

Sous l’hypothèse d’un modèle Cox c’est à dire que le processus S = (St)t∈[0,T ] = Q(τC > t|Ft)

peut être réecrit comme St = e−
∫ t
0 λsds, on peut alors en déduire une forme plus générale de la

CV A0 en prenant en compte le Wrong Way Risk donnée par :

CV A0 = −(1−RC)EQ
∫ T

0

[
(Vs)

+

Bs

λsSs

h(s)G(s)
]dG(s).

Profil d’exposition EPE et CV A correspondante pour un swap de taux d’intérêt sous le
modèle Hull & White avec WWR
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Une autre approche basée sur la définition d’une nouvelle mesure de probabilité est proposé
en définissant la mesure QWWR,t dont la densité de Radon-Nikodym M t

s est donnée par :

M t
s =

dQWWR,t

dQ
|Fs =

EQ[λtSt

Bt
|Fs]

EQ[λtSt

Bt
]
.

A l’aide de cette nouvelle mesure de probabilité, la CV A0 se calcule d’une manière similaire
à la méthode utilisée par les établissement bancaires et financiers en spécifiant la loi de (Vt)

+

sous cette mesure ce qui est effectué via un ajustement de dérive déterministe. La méthode a
été evaluée et a montré de très bons résultats dans la reproduction des profils d’expositions.

Contribution de l’apprentissage supervisé à la valorisation de dérivés
et de XVAs

Ce mémoire propose une étude approfondie des méthodes d’apprentissage supervisé et de leur
utilisation dans le cadre de la valorisation des XV As notamment par rapport aux limitations
des méthodes classiques de Monte-Carlo.

Régression par processus gaussiens

Ce mémoire présente la méthode de régression par processus gaussiens (GPR) pour la modéli-
sation de portefeuilles de produits dérivés, avec des applications pour le calcul efficace du profil
d’exposition et de la CV A0 associée. L’avantage principal de cette méthode est sa capacité
à apprendre efficacement les surfaces de prix à partir d’un ensemble très réduit de données
d’entraînement. Cependant, elle nécessite des paires de données d’entraînement (X, Y ), où les
étiquettes de sortie Y peuvent être bruitées, par exemple lorsque les prix sont estimés à l’aide
de méthodes de Monte-Carlo, ce qui peut rendre l’approche moins robuste. Ce mémoire met
en évidence les capacités de calcul du GPR, tant dans la valorisation des produits dérivés que
dans l’évaluation des produits d’assurance tels que les contrats de garantie minimale à maturité
(GMMB), tout en abordant également les limites de la méthode. Une application du GPR
pour apprendre les surfaces de prix à différents moments au cours de la durée de vie d’un
portefeuille est présentée, combinée à une procédure standard de Monte-Carlo pour surmonter
le problème des Monte-Carlo imbriqués. Cette approche est appliquée à un portefeuille de pro-
duits dérivés européens sous le modèle B− S et à un portefeuille de swaps sous le modèle Hull
& White, montrant une grande précision dans le calcul du profil d’exposition et de la CV A0

associée.

Réseaux de Neurones

Une approche probabiliste :

Ce mémoire examine la formulation probabiliste des XV A en tant qu’espérance conditionnelle,
ce qui, tout comme la régression des processus gaussiens, permet d’apprendre efficacement les
surfaces de prix. De plus, elle exploite l’une des propriétés clés de l’espérance conditionnelle,
à savoir son rôle en tant que solution d’un problème de minimisation. Cette propriété permet
d’éviter la simulation des prix pour apprendre ces surfaces, offrant ainsi un avantage computa-
tionnel par rapport aux méthodes des processus gaussiens. Plusieurs exemples de la méthode
d’apprentissage de l’espérance conditionnelle sont présentés dans le mémoire, notamment pour
le calcul efficace de la marge initiale dynamique (DIM) et de la MVA0 associée à un swap de
taux d’intérêt. Normalement, cette tâche nécessite une procédure de Monte-Carlo imbriquée
en raison du calcul lié au profil de la marge initiale. Une fois que le réseau de neurones est
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entraîné, le coût computationnel est presque négligeable, tandis que le calcul de la DIM à par-
tir du Monte-Carlo devient beaucoup plus chronophage, rendant la méthode de Monte-Carlo
imbriquée inutilisable dans un moteur XV A où les calculs rapides sont cruciaux.

Une approche par EDP :

Ce mémoire explore également la formulation des XV As comme solution d’équations aux
dérivées partielles dans un cadre où les défauts sont modélisés par des variables exponentielles
avec des intensités stochastiques. Les solutions de ces équations aux dérivées partielles sont
alors estimés en utilisant leur lien intrinsèque avec les équations différentielles stochastiques
rétrogrades qui sont très classiques en finance où on se donne le payoff d’un contrat financier
à la date terminale. L’idée de la méthode consiste à réecrire le problème initial comme un
problème de contrôle stochastique où l’on cherche à minimiser un critère nous permettant de
résoudre l’EDP . L’avantage principal de la méthode du Deep XVA Solver réside dans sa
capacité à résoudre des problèmes en très grande dimension par rapport à des méthodes de
Monte-Carlo classique. Des applications de cette méthode sont présentées pour le calcul d’une
option européenne en grande dimension afin de tester l’adaptabilité de la méthode.

Calcul du profil d’exposition pour un contrat forward (gauche) et d’une option basket sur
d = 100 sous-jacents (droite) les 2 sous B − S

Couverture de l’exposition à la contrepartie
Ce mémoire se propose d’étudier le problème de la minimisation par variance moyenne c’est
à dire de trouver une stratégie de portefeuille autofinançante dans un CDS dont on note la
dynamique (CDSt)t∈[0,T ] qui minimise la quantité suivante :

min
C0,(ξt)t∈[0,T ]

EQ

[(
(1−RC)(VτC )

+1τC<T −
(
C0 +

∫ T

0

ξtd(CDS)t

))2
]
.

On modélise la perte pour l’assureur à travers le processus L = (Lt)t≥0 défini ci-dessous : 8

Lt =
Nt∑
i=1

Zi.

8Le modèle considéré est spécifié dans le mémoire dans le chapitre 7 : Towards methods to hedge CCR.
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avec :

• Un processus de comptage N tel que Nt =
∑+∞

n=1 1Tn≤t avec (Tn)n∈N les dates d’arrivée
des sinistres.

• (Zn)n∈N sont des variables aléatoires strictement positives qui modélisent les montant des
sinistres.

• Vt = EQ[e−r(T−t)(LT −K)+|Gt] .

Comparaison de 2 stratégies de couverture dans le but de couvrir l’exposition d’un contrat
stop-loss

Ce mémoire propose également l’étude d’une approche statique de couverture pour un as-
sureur soumis au risque de contrepartie d’un réassureur. L’assureur cherche alors à trouver
les contrats optimaux de réassurance et de couverture qui lui permettent de maximiser son es-
pérance d’utilité. Plusieurs cas sont définis et une étude est proposée dans le cas d’une fonction
utilité de type CARA. 9

Conclusion
Conclusion globale du mémoire

Ce mémoire a permis une vue d’ensemble des méthodes numériques en passant des méthodes
classiques à des méthodes récentes d’apprentissage supervisé pour les challenges associés au
calcul des XV As.

Dans un premier temps, une revue succincte de la gestion des risques liée au défi des XV As
a été effectuée où l’importance d’ajustements pour les risque de contrepartie, liquidité, et de
capital sont justifiés d’un point de vue réglementaire. Un cadre mathématique propre inspiré de
la littérature académique a également été proposé pour le calcul des différentes XV As et con-
stitue le socle de ce mémoire. A partir de ce cadre mathématique, de nombreuses illustrations
ont été proposées pour le calcul du risque de contrepartie sur différents types de produits : des
options européennes de type equity ou des swaps de taux d’intérêt mais également des produits
plus exotiques tels que les options bermudéennes à travers un put et un swaption en utilisant la
méthode dite de Least Square Monte-Carlo. Ce mémoire a également mis en lumière l’impact
conséquent du Wrong Way Risk sur la valorisation des XV As en proposant deux approches de

9CARA signifie Constant Absolue Risk Aversion et est tel que u(x) = −e−αx où α est le paramètre d’aversion
absolu au risque.
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modélisation basées sur des articles de recherche dont l’une basée sur un changement de mesure
permettant d’incorporer le WWR dans le pricing de la CV A appelée Wrong Way Measure.

Dans un second temps, ce mémoire a permis d’illustrer la pertinence des algorithmes
d’apprentissage supervisé pour le calcul des XV As. Une étude particulière a été effectuée
sur l’apport des GPR pour le calcul efficient de profil d’expositions. Une importante partie de
ce mémoire est également consacrée à l’étude des réseaux de neurones profonds et à leur utilité
dans le calcul des XV As. Deux algorithmes ont été étudiés : l’un qui se base sur la représen-
tation sous la forme d’EDP des XV As appelée le Deep XVA Solver où un calcul efficient du
profil d’exposition d’une option en très grande dimension a été effectuée et l’autre basé sur leur
représentation probabiliste appelé Deep Conditional Expectation Solver où un calcul efficient
de la MVA0 d’un swap de taux d’intérêt a été présenté.

Enfin, ce mémoire s’est intéressé aux aspects de couverture du risque de contrepartie. Une
approche dynamique de couverture a été étudiée basé sur les méthodes de couverture quadra-
tique avec un investissement dans un instrument de couverture de référence pour le risque de
contrepartie : les Credit Default Swaps (CDS ). Une application au risque de contrepartie d’un
réassureur basée sur cette approche dynamique a été proposée dans le mémoire. Une approche
statistique basée sur la théorie de l’espérance d’utilité a également été proposée où un assureur
cherche à maximiser l’espérance d’utilité de sa richesse en souscrivant à un contrat de réas-
surance et à un instrument de couverture sur le potentiel défaut du réassureur. Ce dernier
cherche alors à trouver les contrats optimaux qui lui permettront de résoudre son problème
d’optimisation.

En conclusion, ce mémoire a permis d’explorer différents aspects quantitatifs autour de la
gestion des XV As qui sont devenus depuis la crise financière de 2008 un sujet majeur pour les
banques et les assureurs. Ce mémoire a permis de mettre en lumière les défis computationnels
liés à la valorisation de ces XV As ainsi que de proposer de nouvelles méthodes numériques
efficientes pour répondre à ces défis. Enfin, il aura également permis une introduction aux
notions de couverture du risque de contrepartie à l’aide d’une approche dynamique et d’une
autre statique.

Potentiels axes de recherche

• L’industrie financière cherche également à calculer en plus du profil d’exposition moyen
EE le profil d’exposition à un percentile donné α ∈ [0, 1] donné par :

PFEα
t = inf{y : Q((Vt)

+ ≤ y) ≥ α}.
Cette mesure complémentaire fait écho à la définition de la Value-at-Risk et récemment
des méthodes d’apprentissage supervisé ont émergé pour le calcul de ces mesures de risque
en se basant sur une représentation duale de la Value-at-Risk et de l’Expected Shortfall
comme des problèmes de minimisation comme introduit dans l’article Learning Value-at-
Risk and Expected Shortfall de Barrera, Crépey, Gobet, Nguyen et Saadeddine.

• Les algorithmes d’apprentissage supervisé sont actuellement étudiés pour la valorisation
d’options bermudéennes en grande dimension comme introduit dans l’article Deep Optimal
Stopping de Becker, Cheridito, Jentzen où l’exercice optimal est appris sur un échantillon
de données simulées.

• Les réseaux de neurones sont également étudiés pour des objectifs de couverture comme
introduit dans Deep Quadratic Hedging de Gnoatto, Lavagnini et Picarelli où les stratégies
de couverture quadratique sont apprises en se basant sur l’algorithme du Deep BSDE
Solver. Récemment, des méthodes basées sur l’apprentissage par renforcement ont émergé.
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Notations
XVA Ajustement de la valorisation du coût de X

CVA Ajustement de la valorisation du coût du crédit

FVA Ajustement de la valorisation du coût de financement

MVA Ajustement de la valorisation du coût la marge initiale

KVA Ajustement de la valorisation du coût du capital

Vt Valeur du portefeuille à la date t

1
Bt

Facteur d’actualisation au temps t

τC Temps du défaut de la contrepartie C

RC Taux de récupération

G = (Gt)t≥0 Filtration augmentée de l’information du marché avec τC

F = (F t)t≥0 Plus grande sous-filtration de G qui ne contienne pas l’information de τC

sb Coût de l’emprunt

sl Coût du prêt

f écart de financement entre le taux de garantie et le taux sans risque

IM Marge initiale

DIM Marge initiale dynamique

EE Exposition moyenne

EPE Exposition positive moyenne

G Fonction de survie de τC

GMMB Prestation minimale garantie à l’échéance

PDE Equation aux dérivées partielles

WWR Wrong Way Risk

B-S Black-Scholes

IRS Swap de taux d’intérêt

MC Monte-Carlo

LSMC Monte-Carlo par régression par moindres carrés

BSDE Equations différentielles stochastiques rétrogrades

CDS Couvertures de défaillance

PFE Potentielle exposition future
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Introduction

Following the financial crisis of 2008, banks and insurers became aware of the importance of
taking into account counterparty risk in the valuation of transactions on over-the-counter mar-
kets resulting in the computation of the Credit Valuation Adjustment (CVA). Subsequently,
other risks that were previously not taken into account gradually began to become a discussion
of interest for banks and insurers, notably the question of the cost associated with liquidity :
the Funding Valuation Adjustment (FV A) but also the cost of capital with the Capital Valua-
tion Adjustment (KV A) and the cost linked to the deposit of an initial margin in collateralized
contracts : the Margin Valuation Adjustment (MVA). The calculation of X-Valuation Adjust-
ments (XV A) is generally associated with fairly high computational costs and the banking and
insurance industries are constantly looking for new numerical methods to reduce this cost in
order to be able to estimate these quantities consistently with an acceptable calculation time.
In a risk management context, banks and insurers, after having evaluated the XV As, must be
able to proactively manage the risks associated with these value adjustments, whether through
hedging instruments or by using strategies to mitigate these risks.

This dissertation is structured around two major themes. The first focuses on the pricing
of XVAs, transitioning from classic numerical methods based on Monte-Carlo approaches to
supervised learning algorithms, namely deep neural networks and Gaussian process regressions.
Several numerical illustrations are provided to assess the relevance of these methods. Special
attention is given to the modelling of Wrong Way Risk and to measuring its impact on the
valuation of certain XV As for common financial products.

The second theme of this dissertation focuses on the hedging of counterparty exposure after
having evaluated it. Following a brief definition of the characteristics of a CDS, a dynamic
hedging strategy based on this product will be analyzed to minimize the hedging error, with
an application to reinsurance counterparty risk. Finally, a static hedging approach also for
a reinsurer’s counterparty risk, based on expected utility theory, will be examined. In this
context, the optimal reinsurance and hedging contracts for an insurer will be determined.
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Chapter 1

A risk management overview of XVAs

This chapter will introduce the main risk management concepts introduced in [1] which is a
book from Jon Gregory called The XVA Challenge : Counterparty Risk, Funding, Collateral,
Capital and Initial Margin. In the first section of this chapter, we will describe the different
risks which are associated with the main XV As namely Credit, Funding, Capital and Initial
Margin risks. In the second section, we will discuss the regulation around theses XV As by
talking about the capital requirements and the liquidity ratios that need to be respected by
banks in order to mitigate the risks they are facing as financial institutions.

1.1 An overview of the different risks associated to XVAs

1.1.1 Counterparty credit risk

Counterparty Credit Risk (CCR) is often defined as the risk that an entity with whom one
entered into a financial contract fail to honor her agreements. The CCR can happen in every
situation but the most common way it occurs is on OTC derivatives market as they are less
subject to regulations than exchanged markets. In the following figure, we show the contribution
of each asset class in the global CV A in the OTC derivatives market.

Figure 1.1: Contribution on CV A of each asset class (Figure from [1])
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1.1 An overview of the different risks associated to XVAs

As we can see from the figure, the interest rate market has a significant proportion in
the global counterparty risk which can be explained by the vast amount of transactions with
important notionals who are involved in this market. We have also an important amount of
CV A from Foreign Exchange market (FX) which can be explained by the volatility of FX
rates and long time maturity transactions.
Moreover, CCR is characterized by 2 aspects :

• The value of the contract in the future is uncertain. It will be the net value of all future
cash flows under that contract and the value can be positive or negative depending of
which type of contract we are considering. For example, a forward contract can has a
negative or positive future value in the point of view of the buyer of the contract whereas
a call option has always a positive value.

• Since the value of the contract can be positive or negative, counterparty risk can be
bilateral and each counterparty can have a risk exposition to each other.

CVA Definition

The Counterparty Credit Risk can be calculated through the Credit Valuation Adjustment
(CV A) which can be defined from one of the two following ways :

• The price is the cost of an associated hedging strategy which refers to the risk neutral
pricing.

• The price represents the expected value of future cash flows, taking acount the risk pre-
mium.

In the following of this dissertation and because it is the most dominant approach in the
industry, we will use the risk-neutral approach. Moreover, this approach is justified by Bale III
capital requirements where CV A is calculated through credit spreads which necessitates the
use of risk-neutral default probabilities. Moreover, in IFRS 13, the CV A is defined from the
default time price of the derivative who is priced under the risk neutral probability and so are
the default probabilities.

Ways to Mitigate the CCR :

There exists quite a lot of methods to mitigate CCR. Some of them are based on contractual risk
mitigants when others are more complex. We will quickly introduce some of theses techniques
in the following.

Netting

Netting is a technique which allows components like cashflows payments to be offset across
a portfolio. This technique needs the validation of both parties involved in the transaction
and is defined as Netting Agreement. There exists some different netting contracts like cash
flow-netting or close-out netting and differ from how the counterparties aim to reduce their risk
exposure.

Collateralisation

Collateralisation is a technique which involves the posting of cash or securities to cover the
mark-to-market losses. However, there is still a residual risk named the Margin Period of Risk
(MPOR) which is the time taken to receive the collateral amount. This technique is widely
used in financial markets since the Global Crisis of 2008 as it is quite simple to setup with the
help of central counterparties.
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1.1 An overview of the different risks associated to XVAs

Hedging

Hedging is a technique that involves the use of instruments to protect against default events
and credit movements. The main instruments used in the market to hedge the counterparty
risk are based on Credit Default Swap which offer an insurance against the potential default of
the counterparty. The Hedging technique will be introduced more in depth in the last chapter
of this dissertation.

Central Counterparties

Central Counterparties act as intermediates for counterparties involved in a transaction by
centralizing counterparty risk. Their use has grown exponentially sine the global crisis of 2008
as they now become the norm in the major of financial transactions even in OTC derivatives
markets.

An import fact about mitigation of counterparty risk is that he has both advantages and
disadvantages. First, it helps to reduce counterparty risk and to improve financial market
stability. However, due to the risk mitigants, markets concerned by counterparty risk have a
big volume and it makes the financal system more exposed to a systemic risk.

1.1.2 Funding liquidity risk

Funding Liquidity Risk refers to the inability to fund contractual cashflows or collateral pay-
ments. Banks have 2 main types of financing : Debt and Equity and they can use different
types of products as funding sources :

• Debt Funding with deposits and bonds mostly.

• Equity Funding with common equity and preferred shares.

Ways to Mitigate the Funding Liquidity Risk :

There exists quite a lot of methods to mitigate the funding liquidity risk. We will introduce
quickly some of theses techniques in the following.

Diversification by Debt Emission

The Debt emission can help to diversify the sources of funding and hence mitigate the funding
liquidity risk. It can go from a large sample of financial actors such as hedge funds, insurers or
portfolio managers for example.

Liquidity Reserve

In order to mitigate the funding liquidity risk, a bank or an insurer can use liquidity reserve as
it will help if others sources of funding are falling down during a major global crisis. We can
cite the following sources of liquidity reserve :

• Bank Central cash.

• Securities that can be sold as collateral at any time.
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1.1 An overview of the different risks associated to XVAs

Note that since a bank gets funding from both Debt and Equity, the cost of each should be
calculated based on the underlying costs, type of transaction and identity of counterparty. For
instance, the cost of debt is known as the funding spread which is the spread from issuing a
bond for example.

The quantification of the funding costs is done by the computation of the Funding Valuation
Adjustment (FVA) and the Margin Valuation Adjustment (MVA).

The FV A can be understood as a funding cost for uncollateralized or atleast partially col-
lateralized transactions. Assets will provide funding costs whereas liabilities will provide benefit
costs. Therefore, assets which will be in the money will be related to funding cost whereas out
of the money assets will lead to benefit costs. FV A calculation has emerged after the global
financial crisis because before transactions were achieved at the risk free rate. However, theses
fundings have considerably increased and more on the uncollateralized transactions. FV A is
usually related to variation margin which represents collateral variation due to variation of the
portfolio value.

The MVA, unlike FV A can be understood as a cost of overcollateralization in the sense
that MVA will represent the cost due to the posting of an inital margin over the lifetime of
a transaction in the collateralized contracts. MVA is therefore related to the initial margin
profile in opposition with FV A which is related to the variation margin.

1.1.3 Cost of capital risk

The cost of capital should represent the risk of a company’s equity for investors and the bank
will look to outperform the return by defining the Return On Capital (ROC ). The cost of
capital is usually quantified by defining an appropriate percentage on ROC and is mostly a
subjective parameter (10% being a classic assumption for banks). As profits will be taxed, the
ROC on OTC derivatives is more around 15 − 20%. The quantification of the cost of capital
is embedded into the Capital Valuation Adjustment (KV A) but this XV A is highly dependant
of the capital cost profile of the bank which makes it hard to model.
We can summarize the following XV As related to funding and capital costs in the following
figure :

Figure 1.2: Illustration of funding and capital costs and their link with XV As (Figure from
[1])

We end up this section by giving the following table where we summmarize all the major
XV As and their associated cost components.
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1.2 An overview of the regulation around XVAs

Table 1.1: An overview of the differents XV As

XV A valuation adjustment Expected Cost of the Bank
CV A Credit Valuation Adjustment Client Defaut Losses
DV A Debt Valuation Adjustment Bank Defaut Losses
FV A Funding Valuation Adjustment Funding cost for variation margin
MVA Margin Valuation Adjustment Funding cost for initial margin
KV A Capital Valuation Adjustment Remuneration of shareholder capital at risk

1.2 An overview of the regulation around XVAs

1.2.1 Capital requirements

Under Bale Commitee, there has been defined several capital requirements in order to prevent
the different risks that banks can face. We will illustrate some of them as they are keys starting
points of the mathematical definition of XV As which we will introduce in the following chapter.

CCR Capital requirement

Counterparty Credit Risk Capital is defined as the product of three components :

• Probability at default (PD) : The default probability of the counterparty.

• Loss Given Default (LGD) : 100% minus the recovery rate.

• Exposure at Default (EAD) : The exposure to the counterparty.

Defining EAD for derivatives can be challenging in certain situations like when the value of a
portfolio can either be negative or positive and being extremely volatile that’s why there are
specific methodologies on EAD for these situations to assess CCR Capital.

Capital Ratios requirements

• The capital ratio of the bank defined as the percentage of a bank’s capital to its Risk
Weighted Assets (RWA) which is supposed to be greater than 8% and composed of 2 types
of capital : The Common Equity Tier 1 (CET1 ) which is mostly composed of common
equity and the Tier 2 Capital composed mostly of preferenced shares. Regulators have
also imposed that CET1 capital must hold to 4.5% in the 8% capital global ratio.

• The Countercyclical capital buffer which aims to ensure that banks take account the
economic climate and is an additional percentage normally set between 0% and 2.5%.

• The Capital conservation buffer which is a ratio aiming to have capital buffers outside
periods of stress and is set at 2.5% above the minimum capital requirement.

• Globally-Systemically-important bank (G-SIB) surcharge for systemic banks which can go
from 1% to 3.5% additional costs.
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1.2 An overview of the regulation around XVAs

It can be summarized in the following figure :

Figure 1.3: An overview of the capital ratios requirements as part of Bale regulation (Figure
from [1])

Bilateral Margin requirements

• Variation Margin : It represents collateral variation due to variability in the portfolio
transactions and is related to the FV A.

• Initial Margin : It represents extra collateral to cover costs in the case of a default in
bilateral derivative markets and is related to the MVA.

1.2.2 Liquidity ratios

As banks use to fund long-dated illiquid assets with short-term liquid liabilities like deposits,
there was a crucial need to manage the liquidity risk associated to these transactions. One
of major problems for banks was to refinance short-term borrowing regularly, which created
liquidity riskdue to the fact that the funding costs would get more expensive. Therefore, the
Bale Commitee decided to impose international liquidity standards which are the following :

• The Liquidity Coverage Ratio (LCR) : This is a short term liquidity ratio to ensure that a
company has the ressources to survive to a negative liquidity scenario in the 30 following
days.

• The Net Stable Funding Ratio (NSFR) : This is a long term liquidity ratio to ensure the
proportion of long term assets funded by stable funding.

High-Quality Liquid Assets :

The concept of High-Quality Liquid Assets (HQLA) is particularly important in the Liquidity
Ratios as it’s a core concept in both LCR and NSFR. They are defined as the assets that
can easily be converted into cash to ensure liquidity needs at any time. The HQLA can be
decomposed into the following types :

• Level 1 : Assets of excellent liquidity and credit which may be : cash, central bank
reserves, securities guaranteed by sovereign states.

• Level 2A : Less liquid assets than the Level 1 so they cannot represent more than 40% of
the total of HQLA : It may be sovereign or corporate bonds.

• Level 2B : Most illiquid assets and they cannot represent more than 15% of the total of
HQLA: It can concern equities, corporate bonds, mortgage backed securities.
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1.2 An overview of the regulation around XVAs

The Liquidity Coverage Ratio :

As we said, the LCR is a short-term liquidity ratio to ensure that the institution can face an
adversial liquidity episode in the next 30 days. The LCR ratio can be defined as :

Stock of HLQA
Total net cash outflows over the next 30 days

≥ 100%. (1.1)

Under the LCR, institutions must consider increased liquidity needs in relation to changes in
the valuation of derivatives or in the collateral associated to theses transactions as we must
hold the condition 1.1 which can have an impact both to FV A and MVA.

The Net Stable Funding Ratio :

The NSFR is a long-term liquidity ratio ensuring that banks hold a minimum amount of stable
funding over one year to prevent liquidity transformation. The NSFR ratio can be defined as :

Available amount of stable funding
Required amount of stable funding

≥ 100%. (1.2)

The NSFR is quite hard to handle for derivatives as they can be either assets or liabilities
(depending on the sign associated in the transaction). Therefore, they are some features specific
to derivatives which can receive a different treatment. For instance, the NSFR assumes that
collateral generated from derivatives cannot fund another part in the institution balance sheet
which can be an important factor in FV A. The NSFR also can have impact on the MVA and
initial margin. Indeed, it’s considering that receiving an initial margin doesn’t afford available
amount of stable funding which is normal because it is usually segregated.
In the table below, we give the main regulatory changes since the global crisis of 2008.

Table 1.2: An overview of the regulatory changes since the 2008 crisis

Strenghten Capital
Bases

Strenghten
Liquidity
Standards

Clearing Mandate

Introduction of a
CV A capital charge

Liquidity Coverage
Ratio (LCR)

Mandatory clearing of
standardised OTC

derivatives

Strenghten Capital
Ratio requirements

Net Stable Funding
Ratio (NSFR)

Bilateral margin
requirements for
uncleared OTC

derivatives
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Chapter 2

XVA Mathematical framework

In this chapter, we are going to give the main mathematical framework we are going through in
this dissertation. Except for CV A, there is not a clear mathematical definition of other XV As
and therefore we will refer to the existing litterature which is mostly based from the paper [2]
of Green, Kenyon and Dennis where they derive expressions for major XV As.

2.1 CVA and BCVA modelling
Credit Valuation Adjustment (CV A) is a financial metric used in order to to measure the
potential credit risk associated with financial instruments like derivatives. This metric allows
to quantify the expected loss an agent will occur if the counterparty fails to meet his financial
obligations. Mathematically, the CV A is defined as the difference between the risk free and the
risky prices of a financial instrument. Debt Valuation Adjustment (DV A) is also a financial
metric which concerns the measure of the own potential default of a counterparty. Combining
both CV A and DV A will result in the BCV A modelling which will be the matter of the
subsection 2.1.2.
In the following, we will refer to the letter C when it will be related to the counterparty C and
to the letter A when it will be about the bank / insurer point of view.

2.1.1 Unilateral CVA

We will assume a probability filtered space (Ω,G,G = (Gt)t≥0,Q) with Q assumed to be a risk
neutral pricing probability measure. We will introduce firstly all the notations which will be
necessary to compute the equations of unilateral CV A . In this order, we’ll note :

• T : Contract Maturity.

• Vt : Value of the risk free contract at date t.

• V D
t : Value of the risky contract at date t.

• τC : Random variable valued in ]0,+∞[ representing the default time of the counterparty
C.

• H : Random process H = (Ht)t≥0 such has Ht represents if the default has occured before
t : Ht = 1τC≤t.

• RC : The recovery rate in case of default of the counterparty C which will be assumed
constant in this dissertation.
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2.1 CVA and BCVA modelling

• LGD : Loss Given Default defined as LGD = (1−RC).

• Z : The recovery process Z = (Zt)t≥0 which we assume has the form Zt = RC max(Vt, 0) =
RC(Vt)

+.

We will now define the short risk free rate r = (rt)t≥0 and the bank account numeraire
Bt = e

∫ t
0 rsds allowing us to write the following dynamics for Bt :

dBt = Btrtdt.

As a main difference from the classic framework of Option Pricing Theory because of the
potentiel default of the counterparty, we have to be careful about which information does the
institution hold in the market. For this, we define the following filtration :

• F = (Ft)t∈[0,T ] : Filtration of the market without default.

• H = (Ht)t∈[0,T ] : Filtration associated with the default such that Ht = σ((Hs)s≤t
) where

σ denotes the lowest σ-algebra on ((Hs)s≤t
).

• G = (Gt)t∈[0,T ] : Filtration containing all the market information such that Gt = Ft ∨Ht.

It is crucial to use this new filtration G as τC is not necessarily a F -adapted stopping time but
is a G-adapted stopping time. This result of considering the filtration H is called Progressive
Filtration Enlargment.
One of the major issues of considering G instead of F is the properties of the stochastic processes
under F which may be different under G.

Lemma 2.1. Passage Formula
Consider Y a G-measurable function. Therefore we have the following identity ∀ t ≥ 0

EQ[1τC>tY |Gt] = 1τC>t

EQ[Y 1τC>t|Ft]

Q(τC > t|Ft)
. (2.1)

Proof. The proof of this lemma is based on a technical result which allows to identify a Gt
measurable random variable as a Ft measurable random variable on the event τC > t. Assuming
this result, we can therefore write for a random variable Yt Ft-measurable that we have :

1τC>tEQ[Y |Gt] = EQ[1τC>tY |Gt] = 1τC>tYt. (2.2)

Now by conditioning by Ft, and using the fact that Ft ⊂ Gt, we therefore have that :

Yt =
EQ[Y 1τC>t|Ft]

Q(τC > t|Ft)
.

By remplacing now Yt in (2.2) ends the proof.

To derive an intuition of the CV A formula we will propose below, let’s consider the case of an
european derivative with final potential payoff g(XT ) such as we have the following definitions
for Vt and V D

t .

Vt = EQ[
Bt

BT

g(XT )|Ft] = EQ[
Bt

BT

g(XT )|Gt],

V D
t = 1τC>tEQ[

Bt

BT

g(XT )1τC>T +
Bt

BτC
ZτC1t≤τC≤T |Gt].

(2.3)
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2.1 CVA and BCVA modelling

Now, we give the following lemma :

Lemma 2.2. ∀t ∈ [0, T ], we have :

EQ[1t≤τC≤T

Bt

BτC
VτC |Gt] = EQ[

∫ T

t

Bt

Bs

VsdHs|Gt] = EQ[1t≤τC≤T

Bt

BT

g(XT )|Gt]. (2.4)

Proof. The first equality comes from the definition of Ht. For the second equality, let’s define
the following stopping time σC = (τC ∧ T ) ∨ t. It defines well a stopping time adapted to
filtration G by classic operations on stopping times. As σC is a bounded stopping time and
because that the process (Vt)

Bt
is a G −Q martingale, we therefore have using the Doob theorem:

VσC = EQ[
BσC

BT

ϕ(XT )|GσC ]. (2.5)

Or , on the event {t ≤ τC ≤ T}, we have σC = τC , and therefore using the equation 2.5, we
have :

EQ[

∫ T

t

Bt

Bs

VsdHs|Gt] = EQ[1t≤τC≤T

Bt

BτC
VτC |Gt] = EQ[EQ[1t≤τC≤T

Bt

BT

ϕ(XT )|GσC |Gt].

The result follows from the tower law property as we have Gt ⊂ GσC

Now, let’s consider the difference between Vt and V D
t . We can rewrite V D

t as the following:

V D
t = 1τC>tEQ[

Bt

BT

g(XT )(1− 1τC≤T ) +
Bt

BτC
ZτC1t≤τC≤T |Gt].

Using now Lemma (2.2), we get assuming working on the event {τC > t} that :

V D
t = Vt + EQ[(RC − 1)(1τC≤T

Bt

BT

g(XT ))|Gt].

We then can define the CV A for an european derivative as follows :

CV At = 1τC≥t(Vt − V D
t ) = (1−RC)EQ[1t≤τC≤T

Bt

BT

g(XT )|Gt],

CV At = (1−RC)EQ[1t≤τC≤T

Bt

BT

g(XT )|Gt] = (1−RC)EQ[

∫ T

t

Bt

Bs

VsdHs|Gt].

From this definition of the CV A for an european derivative we clearly see that the Credit Valu-
ation Adjustment is the difference between the risk-free derivative and the associated derivative
defautable value. Now, we can give the global definition of the process CV A.

Definition 2.1.1. We define the CVA as the market consistent value of the future credit loss
for a product with value at time t denoted by Vt and with a recovery process assumed to be of
the form Zt = RC(Vt)

+.

CV At = (1−RC)EQ[

∫ T

t

Bt

Bs

(Vs)
+dHs|Gt] = (1−RC)EQ[1t≤τC≤T (VτC )

+ Bt

BτC
|Gt]. (2.6)
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2.1 CVA and BCVA modelling

A simplified version of the CV A in practice :

In practice, we are most interested in the computation of CV A0 under common assumptions
which will be discussed in the last section. Indeed, let’s go back on equation (2.6) which we
can we rewrite as follows :

CV A0 = (1−RC)EQ[1τC≤T

(VτC )
+

BτC
],

= (1−RC)EQ[EQ[1τC≤TEQ[
(VτC )

+

BτC
|τC ]].

Admitting that the random variable τC admits a density , we can therefore rewrite CV A0 as
follows by defining respectively the cumulative and survival probability function of τC denoted
by F (t) = Q(τC ≤ t) and G(t) = 1− F (t) = Q(τC > t).

CV A0 = −(1−RC)

∫ T

0

EQ[
(Vt)

+

Bt

|τC = t]dG(t). (2.7)

Under the assumption of independance between the credit exposure and the value of the
derivate/ porfolio, we can rewrite CV A in the easiest following form :

CV A0 = −(1−RC)

∫ T

0

EQ[
(Vt)

+

Bt

]dG(t). (2.8)

The equation (2.8) is the most fondamental equation of CVA and is the most used by practi-
tioners. Let’s define some quantities why are key factors in the calculation of the CV A :

• The quantity (Vt)+

Bt
is called Positive Exposure and is note PE(t).

• The quantity (Vt)−

Bt
is called Negative Exposure and is noted NE(t).

• The quantity EQ[ (Vt)+

Bt
] is called Expected Positive Exposure and is noted EPE(t).

• The quantity EQ[ (Vt)−

Bt
] is called Expected Negative Exposure and is noted ENE(t).

The function defined by t ∈ [0, T ] 7→ EPE(t) is often called positive exposure profile and has
a lot of interest for practicioners.
The CVA from equation (2.8) can therefore be approximated considering on an homogenous
timegrid 0 = t0 < t1 < . . . < tN = T with ti+1 − ti = T

N
∀i ∈ [[0;N − 1]] by the following :

CV A0 ≈ −(1−RC)
N−1∑
i=0

EPE(ti)(G(ti+1)−G(ti)). (2.9)

Some remarks on the CVA formula :

• In order to compute CV A0, we need to be able to derive survival probabilities G for
the counterparty C which can be done using CDS bonds on the market or equivalent
products.

• We need to be able to compute the exposition profile which can be computationally
intense as we need to evaluate EQ[ (Vt)+

Bt
] which can lead to nested Monte-Carlo when Vt

needs to be calculated himself using a Monte-Carlo procedure.

In general, if we consider products for which we don’t get a closed formula for Vt, it will be
computationally too intensive to perform the Nested Monte-Carlo. We will illustrate it in the
following chapter.
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2.1 CVA and BCVA modelling

An interest case study for the CVA : The Cox setup

In a lot of situations, the only observable quantity are the asset prices who generate the filtration
F so it’s better to write V D

t and after CV At in terms of Ft instead of Gt (in the case of an
european derivative). For this, we can use the Lemma (2.1) and using the fact that 1τC>t is Gt
measurable we have :

V D
t = 1τC>t

EQ[ Bt

BT
g(XT )1τC>T + Bt

B
τC
ZτC1t≤τC≤T |Ft]

Q(τC > t|Ft)
.

CV At = 1τC>t(Vt − V D
t ).

We see from this equation that we need to give an appropriate form we denote S = (St)t∈[0,T ])

such as St = Q(τC > t|Ft).
The Cox setup is an intensity based approach where we assume the following representation
for the process St :

St = e−
∫ t
0 λsds. (2.10)

where λ = (λt)t∈[0,T ] is assumed to be a non-negative F-adapted process.
Moreover, and under proposition 5.1.1 from [3], we have the following representation for V D

t :

V D
t = 1τC>tEQ[e−

∫ T
t (rs+λs)dsg(XT )|Ft] + 1τC>tEQ[

∫ T

t

Zsλse
−

∫ s
t (λu+ru)du|Ft]. (2.11)

Using now theorem 4.16 from [4] , we can show that V D
t can be rewritten as :

V D
t = 1τC>t(R

CEQ[e−
∫ T
t rudug(XT )|Ft] + (1−RC)EQ[e−

∫ T
t (ru+λu)dug(XT )|Ft]). (2.12)

We finally have a consequence the following formula for CV A of european derivatives in the
Cox approach :

CV At = 1τC>t(Vt − V D
t ) = 1τC>t(1−RC)EQ[e−

∫ T
t rudug(XT )(1− e−

∫ T
t λudu)|Ft]. (2.13)

Remark. In a more general framework, as how we defined St, we must verify that :

EQ[St] = G(t), ∀t ∈ [0, T ].

It can be shown that CV At can be rewritten as :

CV At = 1τC>t(1−RC)EQ[

∫ T

t

e−
∫ s
t (ru+λu)du(Vs)

+λsds|Ft]. (2.14)

2.1.2 Bilateral CVA

Bilateral CVA is a modification of unilateral CVA, in the sense that we will allow the poten-
tial default of the buyer of the contract. As we notice in the beginning of this section, we
denote by letter A the corresponding counterparty. Consequently, the value of the risky asset
for A is calculated as the risk-free value of the derivative minus the CV A that incorporates
the counterparty’s default risk of C which is denoted by CV AA plus the CV A computed by

13



2.1 CVA and BCVA modelling

considering the holder’s own risk perceived by the counterparty C, denoted by CV A. For this,
we will introduce the Debt Valuation Adjustment (DV A) which is equivalent to the CV A but
represents the holder’s counterparty risk.
We can therefore introduce the random time of default A, denote by τA and we can define as
we did in the previous section.
We denote by τ = τC ∧ τA and G the filtration augmented by the information with (HA

t )t∈[0,T ]

such that HA
t = 1τA<t.

Therefore, we can write the following equations for V D,A
t which is the risky value of the product

as seen in the point of view of A, and similarly V D,C
t for the point view of the counterparty C :

BCV AA
t = 1τ>t(Vt − V D,A

t ). (2.15)

BCV AC
t = 1τ>t(Vt − V D,C

t ). (2.16)

where BCV A means Bilateral CV A and is calculated as follows :

BCV AA
t = CV AA

t −DV AA
t . (2.17)

BCV AC
t = CV AC

t −DV AC
t . (2.18)

As we said, DVA is equivalent to the CVA but for the holder counterparty risk so the derivation
of the formula is straightforward and can be calculated as.

DV AA
t = CV AC

t = (1−RA)1τC>tEQ[
Bt

BτA
1t≤τA≤T (−VτA)+|Gt]. (2.19)

The sign − comes from the fact that under A point of view, if he defaults, he is exposed
to the negative part of Vt as he holds a long position in the product. Usually, as (−x)+ =
max(−x, 0) = x−, we usually rewrite 2.19 as the following :

DV AA
t = (1−RA)1τC>tEQ[

Bt

BτA
1t≤τA≤T (VτA)

−|Gt]. (2.20)

In the following, we won’t really calculate BCV A as when we will calculate CV A, we will
assume that the the buyer of the contract is default-free so τA = +∞. However, when we will
deal with FV A, we will have to model the creditworthiness of the counterparty A.

2.1.3 Netting principle for CVA

Let’s consider that party A has many financial contracts with a counterparty B. When A com-
putes the total CVA for the counterparty B, he can either consider the 2 following possiblities:

• Sum the CV A of all contracts with the counterparty.

• Compute a single CV A computed on the sum of valuations of all contracts considered as
a single one.

Assume that counterparty A has 2 long positions on 2 differents contracts with C denoted
respectively by value V 1

t and V 2
t .

If A computes the CV A under the first possibility, he will then charge the following amount to
C :

CV ACase1
t = (1−RC)EQ[1t≤τC≤T

Bt

BτC
((V 1

τC )
+ + (V 2

τC )
+)|Gt].

14



2.2 An FVA framework

However, if he decides to go under the second possibility, he will then charge the following
amount to C :

CV ACase2
t = (1−RC)EQ[1t≤τC≤T

Bt

BτC
((V 1

τC + V 2
τC )

+|Gt].

However, from the simple fact that ∀(x1, x2) ∈ R2 (x1 + x2)
+ ≤ (x1)

+ + (x2)
+, we have :

CV ACase2
t ≤ CV ACase1

t ∀t ∈ [0, T ].

We see therefore that we can reduce the overall CVA by considering the second possibility
which is called a netting agreement between counterparty A and C as the positive exposure of
all contracts is lower than the sum of the exposures of the individual contracts.

2.1.4 Wrong and Right Way Risk for CVA

So far, we have considered for the computation of CV A the case of indepedence between credit
exposure and the value of the portfolio. However, in reality, this assumption may not be re-
alistic in a lot of situations and its manifestation can be potentially dramatic. Wrong Way
Risk (WWR) occurs when the counterparty is more likely to default which results in an higher
exposure profile and vice versa. WWR is often seen as an unavoidable consequence of financial
markets. For instance, mortgage providers, who during an economic recession will face both
falling of property prices and higher default rates. The Right Way Risk is the opposite of
WWR meaning that there is a favourable dependance between credit exposure and exposure
which can reduce the overall CV A.
Mathematically, the Wrong Way Risk appears from equation 2.7 where the conditioning expo-
sure EQ[

V +
t

Bt
|τC = t] cannot be simplified into EQ[

V +
t

Bt
]. The modelling of WWR will be explored

in details in chapter 4 where we will refer to intensity approaches.

2.2 An FVA framework
Funding Valuation Adjustment (FV A) is a financial metric used in order to measure the liq-
uidity of funding associate with financial instruments. As the calculation of FV A is still under
debate between practicioners and researchers, there exists multiple frameworks to handle the
computation of FV A.

In this section, we will mainly refer to the FV A framework used in [5] as noticed in the
preambule of the chapter. We can refer to [6] for another XV A framework where the FV A
has a recursive form. We will consider the same notations as we used for the CV A and we will
introduced the ones who need to be introduced in the FV A context.
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2.2 An FVA framework

2.2.1 FCA and FBA modelling

The FCA can be written as follows where τ = τC ∧ τA and Gt is enlarged with the filtration
associated with the potential defaut of A by denoting the random process HA

t = 1τA<t.

Definition 2.2.1. The FCA of a financial derivative V is defined as follows :

FCA(t) = EQ[

∫ T

t

1u≤τ
Bt

Bu

sb(u)(Vu)
+du|Gt]. (2.21)

where sb denotes the spread of borrowing for A over the risk-free rate

The assumption of independance between the default of A and C is a common hypothesis
as it has been shown that the impact is quite moderate so we will assume this hypothesis in
the following proposition.

Proposition 2.1. Under independance of defaults, FCA can be written as follows by supposing
that Q(τA > t|Ft) = e−

∫ t
0 λA

s ds and Q(τC > t|Ft) = e−
∫ t
0 λC

s ds.

FCA(t) = 1t≤τ

∫ T

t

EQ[e−
∫ u
t (λA

s +λC
s )dsBt

Bu

sb(u)(Vu)
+|Ft]. (2.22)

Proof. The proof will be based on the Lemma 2.1 where we assume that the equality EQ[1τC>uY |Gt] =
1τC>t

EQ[Y 1
τC>u

|Ft]

Q(τC>t|Ft)
holds true ∀ 0 ≤ t < u. Going back into the equation (2.21), we can rewrite

it :

FCA(t) = EQ[

∫ T

t

1u≤τ
Bt

Bu

sb(u)(Vu)
+du|Gt],

FCA(t)
Fubini
=

∫ T

t

EQ[1u≤τ
Bt

Bu

sb(u)(Vu)
+|Gt]du,

FCA(t)
Lemma 2.1

= 1t≤τ

∫ T

t

EQ[1u≤τ
Bt

Bu
sb(u)(Vu)

+|Ft]

Q(τ > t)|Ft)
du,

FCA(t) =
1t≤τ

e−
∫ t
0 (λ

A
s +λC

s )ds

∫ T

t

EQ[1u≤τ
Bt

Bu

sb(u)(Vu)
+|Ft]du. (2.23)

Now, let’s handle the term EQ[1u≤τ
Bt

Bu
sb(u)(Vu)

+|Ft]. For this, let’s condition on Fu as Ft ⊂ Fu.
We have therefore :

EQ[1u≤τ
Bt

Bu

sb(u)(Vu)
+|Ft] = EQ[EQ[1u≤τ

Bt

Bu

sb(u)(Vu)
+|Fu]|Ft],

= EQ[EQ[1u≤τ |Fu]
Bt

Bu

sb(u)(Vu)
+|Ft],

= EQ[e−
∫ u
0 (λA

s +λC
s )dsBt

Bu

sb(u)(Vu)
+|Ft].

The passage of the first line comes from the tower law for conditional expectation. The second
line is justified by the Fu-measurability of the process e−

∫ u
t rsdssb(u)(Vu)

+. The third line
obtained by the independance between defaults.
By reuniting this term in (2.23), we recover the expression in (2.25).

16



2.2 An FVA framework

Definition 2.2.2. The FBA of a financial derivative V is defined as follows :

FBA(t) = EQ[

∫ T

t

1u≤τ
Bt

Bu

sL(u)(Vu)
−du|Gt]. (2.24)

where sL denotes the spread of lending for A over the risk free rate.

Proposition 2.2. Under independance of defaults, FBA can be written as follows by supposing
that Q(τA|Ft) = e−

∫ t
0 λA

s ds and Q(τC |Ft) = e−
∫ t
0 λC

s ds.

FCA(t) = 1t≤τ

∫ T

t

EQ[e−
∫ u
t (λA

s +λC
s )dsBt

Bu

sL(u)(Vu)
−|Ft]. (2.25)

Proof. The proof follows the identical approach as for the FCA.

Once theses quantites are computed, the process FV A is defined as follows :

Definition 2.2.3. The FVA on a financial derivative V is defined as :

FV A(t) = FCA(t)− FBA(t) ∀t ∈ [0, T ]. (2.26)

We see immediatly that we can define :

EEFV At : [t, T ]→ R+

u 7→ EQ[e−
∫ u
t (λA

s +λC
s )dsBt

Bu

sb(u)(Vu)
+|Ft]− EQ[e−

∫ u
t (λA

s +λC
s )dsBt

Bu

sL(u)(Vu)
−|Ft].

FV A(t) =

∫ T

t

EEFV At(u)du. (2.27)

In the next chapters, as we will mostly focus on the cost of funding for A, we will assume
that FBA(t) = 0 ∀t ∈ [0, T ] so that FV A reduces to FCA.

A simplified version of the FVA in practice :

Moreover, the 2.25 can still be simplified by assuming again independance between exposure and
credit default which is the approximation done in practice. The equation therefore simplifies
for FCA0 as :

FCA0 =

∫ T

0

Q(τA > u)Q(τC > u)EQ[
1

Bu

sb(u)(Vu)
+]du.

which can be approximated over an homogenous timegrid 0 = t0 < t1 < . . . < tN = T with
ti+1 − ti = T

N
∀i ∈ [[0;N − 1]] such that by supposing a deterministic spread of borrowing sb,

we have :

FCA0 ≈
N−1∑
i=0

Q(τA > ti)Q(τC > ti)sb(ti)EPE(ti)(ti+1 − ti). (2.28)

Therefore, we see that for both CV A and FV A, the exposure profile EE(t) is a risk factor
and the computation of this quantity is crucial for practicioners to calculate theses values
adjustments.
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2.3 An MVA framework

2.2.2 Wrong and Right Way Risk for FVA

The Wrong Way Risk can have an impact on FV A and this measurement needs to be done in
a risk management perspective. Indeed, during the Covid crisis, there was a global distress in
financial markets which made the funding spreads explode and created unexpected losses. In
the FV A, Wrong Way Risk means increased funding spreads due to increased market risk. In
the case of a portfolio of receiver swaps, Wrong Way Risk will occur when there is a negative
exposure between interest rates and funding spreads because when interest rates go down,
exposure goes up and it increases the FV A and therefore the funding spread.

2.3 An MVA framework
The Margin Valuation Adjustment (MVA) is based on the calculation of the initial margin
(IM) which is a margin introduced in order to cover the market risk of a portfolio during the
necessary time to unwind the position. When an institution is involved in a bilateral transaction
and the other counterparty defaults, there is close-out time for the position named as Margin
Period of Risk (MPOR) which is typically of 10 business days. Therefore, the IM term should
be able to capture the potential exposure that can happen during the MPOR and it has been
required that the IM should correspond to a 99 % Value-At-Risk (VaR) change of the porfolio
value under the MPOR.

As IM is a form of collateralization that cannot be netted and is segregated , it can lead
to considerable costs for the entities involved in the exchange. The risk associated to theses
funding costs is called MVA and it requires the knowledge of the IM profile during the life
time of the transaction. Indeed, Dynamic Initial Margin (DIM) is understood as the expected
IM that has to be posted at t and can be defined as :

DIM(t) = EQ[e−
∫ t
0 ruduIM(t)|F0]. (2.29)

Once this quantity is computed and according to a funding spread between the collateral
rate and the risk free rate denoted by f , we can then compute the MVA as follows :

MVA0 =

∫ T

0

f(s)DIM(s)ds. (2.30)

As we can see, the main feature of the computation of the MVA is the calculation of the
DIM which himself requires the computation of the initial margin. This term is obviously the
main factor in the MVA computation and is hard to handle which made a lot of debate in the
industry. To manage this issue, the Standard Initial Margin Model (SIMM ) proposed by ISDA
1 decided to promote a method for the computation of the IM and this is the one we will use
in this dissertation. Other methods can exist for the computation of the IM profile which can
be based on internal methods but need to be approved by regulatory authorities.

1The SIMM framework will be presented in the chapter 6 when an MVA computation will be performed.

18
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2.4 The KVA challenge
The Capital Valuation adjustment (KV A) is based on the fact that investors require a return
on investment. The modelling of the KV A is quite challenging as it involves the computation
of the capital profile of the banks and the associated cost of capital.
In [2], they propose a methodology to compute the KVA as follows :

KV A0 = −
∫ T

0

e−
∫ t
0 ru+λA

u+λC
u duCC(t)EQ[K(t)]dt. (2.31)

where :

• CC defines the cost of capital which is a really subjective term which will depend on the
institution’s policy.

• K defines the capital that is expected to be held by the institution.

As we can see from this definition of KV A, it is hard to define an appropriate CC cost
profile and a capital K profile as they highly depend of the institution’s policy.

In the litterature, there exists another way to model the KV A introduced in [?] :

KV A0 = hEQ[

∫ T

0

e−
∫ s
0 (ru+h)duECs(L)max(ESs(L), KV As)ds]. (2.32)

where :

• ECs(L) refers to the economic capital of the bank and is proposed to be ECs(L) =
max(ESα

s (L), KV As) where ESα
s (L) is the Expected Shortfall at level α on the portfolio

value L.

• h is the hurdle rate at which the investors of the bank should be remunerated.

From equation 2.31, the KV A is higly reliable on the institution’s policy and from equation
2.32, it is computationally intensive as it requires the computation of a risk measure at any
time t < T on the portfolio of the bank.
In the following of this dissertation and for the reasons cited above, we won’t focus on the
computation of KV A and mainly focus on the others XV As.
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Chapter 3

Some use cases for CVA computations

In this chapter, we will illustrate some CV A0 computations on various financial instruments.
We will start with european options and forward contracts under Black-Scholes (B−S) model.
Next, we will illustrate the computation of EE profile and associated CV A0 for an interest
rate swap under 2 models : Hull & White and G2 + +. We will also present some results for
the case of bermudan options by considering a put and a swaption. Finally, we will end this
chapter by showing the impact of a netting agreement in the CV A computation of a portfolio.

3.1 EE profile and CVA on some financial products under
B-S model

For this section, we will consider a a filtered probability space (Ω,F ,Q) with F = (Ft)t≥0 the
canonical filtration generated by a brownian motion (Wt)t≥0. We assume that Q defines a risk
neutral probability measure. The B − S model is given by the following dynamics for the
underlying S = (St)t≥0 :

dSt = St(rdt+ σdWt), S0 ∈ R+
∗ . (3.1)

We will consider either the case of an european call and a forward contract to see the core
concepts and challenges of CV A computations. In the case of the equation (2.8) which we
rewrite here for convenience, we know that CV A0 can be computed as :

CV A0 = (1−RC)

∫ T

0

EQ[
(Vt)

+

Bt

]dF (t) = −(1−RC)

∫ T

0

EQ[
(Vt)

+

Bt

]dG(t).

3.1.1 EE profile of an european call

We know that in the case of an european call with a strike K and a maturity T with final payoff
given by (ST −K)+, we have :

Vt = EQ[e−r(T−t)(ST −K)+|Ft] ∀t ∈ [0, T ]. (3.2)

This quantity can be calculated analytically and we recover the famous B − S formula :

Vt = StN(d1)−Ke−r(T−t)N(d2) ∀t ∈ [0, T ]. (3.3)

with :

• N is the cumulative distribution function of a N (0, 1) random variable defined by N(x) =∫ x

−∞
1√
2π
e−

t2

2 dt.
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3.1 EE profile and CVA on some financial products under B-S model

• d1 =
ln(

St
K

)+(r+σ2

2
)(T−t)

σ
√
T−t

.

• d2 = d1 − σ
√
T − t.

As a call is an option, it means that the buyer of the contract who holds a long position is always
exposed to the counterparty credit risk and the exposure which is defined by (Vt)

+ reduces to
Vt.
Therefore the exposition profile function EPE defined in our context is given by :

EPE(t) = EQ[e−rtVt] ∀t ∈ [0, T ]. (3.4)

But in our setting, the process (e−rtVt)t∈[0,T ] defines a martingale and we therefore have that
the exposition profile EPE for a call is given by : 1

EPE(t) = V0 = S0N(d1)−Ke−rTN(d2).

Therefore, the CV A0 of an european call reduces to :

CV A0 = (1−RC)V0 (1−G(T )) . (3.5)

Moreover, we can also calculate the DV A for the call as it is related to the calculation of (Vt)−
in the associated exposure. However, for an option, we have :

(Vt)
− = 0 ∀t ∈ [0, T ].

Therefore, we have that ENE(t) = 0 and the DV A0 for the buyer of a call is therefore equal
to 0.
We give below the calculation of the exposition profile EPE and ENE for a call of maturity
T = 1 :

Figure 3.1: EPE and ENE profiles for a call option under a B − S model with the following
parameters : (S0 = 100, K = 100, r = 0 and σ = 0.25)

1Note that neither d1 neither d2 are functions of t here.
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3.1 EE profile and CVA on some financial products under B-S model

After calculating the exposition profile function, we are able to calculate the associated
CV A0 by assuming a cumulative distribution function for τC and using equation 3.5. For the
illustration case, we will assume that τC ∼ E(λ)2.

Here is below an illustration of the evolution of CV A0 for a call as a function of λ the
default intensity parameter.

Figure 3.2: Evolution of CV A0 for a call option as a function of intensity default λ with
RC = 0.4.

Some remarks on the computation of CV A0 of a call option :

• As we can see, when λ increases, CV A0 also increases which is an expected behavior
because the counterparty is more likely to default.

• We assume that the default time of the counterparty is given by an exponential distribu-
tion as it is the most common choice but any other relevant choice could have been used.
Moreover, we assume that the distribution parameter λ can be calibrated from market
instruments like CDS or any other relevant credit derivatives.

• When we derive the equation for the CV A0 of a call, we found out that it could be
efficiently calculated by (3.5) but we can extend this formula to any european derivative
as long as we have a final payoff given by ϕ(ST ). For instance, if we considered a put
option with final payoff ϕ(ST ) = (K − ST )

+, we would have the same formula (3.5) with
V0 being in this case equal to :

V0 = Ke−rTN(−d2)− S0N(−d1). (3.6)

Anyways, by noting V ϕ
0 the price of an european option with payoff ϕ(ST ) and CV Aϕ

0 the
associated CV A0, we have :

V ϕ
0 = EQ[e−rTϕ(ST )].

CV Aϕ
0 = (1−RC)V ϕ

0 (1−G(T )) .

2E(λ) stands for the exponential distribution of parameter λ such that F (t) = (1− e−λt)1t≥0.
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3.1 EE profile and CVA on some financial products under B-S model

3.1.2 EE profile of a forward contract

We know that in the case of a forward contract with a strike K and a maturity T with final
payoff given by (ST −K), we have :

Vt = EQ[e−r(T−t)(ST −K)|Ft] ∀t ∈ [0, T ]. (3.7)

This quantity can be calculated analytically and we recover :

Vt = St −Ke−r(T−t) ∀t ∈ [0, T ]. (3.8)

A major difference between the consideration of the call option and the forward contract is
the non simplification (Vt)

+ = Vt as the price of the forward contract can be either positive or
negative from the point of view of the institution A.
Therefore the exposition profile function EPE defined in our context by :

EPE(t) = EQ[e−rt(Vt)
+] = EQ[e−rt(St −Ke−r(T−t))+] ∀t ∈ [0, T ]. (3.9)

We recognize the calculation of a call option with maturity t and strike given by Ke−r(T−t). It
follows from the classical calculation for a call option in the B − S model : 3

EPE(t) = V0 = S0N(d1)−Ke−rTN(d2).

with :

• d1 =
ln(

e−rtS0
K

)+(r+σ2

2
)t

σ
√
t

.

• d2 = d1 − σ
√
t.

Therefore, the CV A0 of a forward contract has to be calculated following equation (2.9) as
EPE is here a function of t.
Moreover, we can also calculate the DV A for the forward contract as it is related to the
calculation of (Vt)− in the associated exposure.

(Vt)
− = (St −Ke−r(T−t))− = (Ke−r(T−t) − St)

+ ∀t ∈ [0, T ]

Therefore, we have that the ENE at time t for the buyer of a forward contract is equivalent
to the pricing a put option of maturity t with strike Ke−r(T−t) and we finally have :

ENE(t) = Ke−r(T−t)N(−d2)− S0N(−d1). (3.10)

3Note that d1 and d2 are functions of t here.
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3.1 EE profile and CVA on some financial products under B-S model

We give below the calculation of the exposition profile EPE and −ENE for a forward
contract of maturity T = 1 :

Figure 3.3: EPE and ENE profiles for a forward contract under a B − S model with the
following parameters : (S0 = 100, K = 100, r = 0 and σ = 0.25)

After calculating the exposition profile function, we are able to calculate the associated
CV A0 by assuming a cumulative distribution function for τC and using (3.5). For the illustra-
tion case, we will assume also that τC ∼ E(λ).

Here is below an illustration of the evolution of CV A0 for a forward contract as a function
of λ the default intensity parameter.

Figure 3.4: Evolution of CV A0 for a forward contract as a function of intensity default λ with
RC = 0.4.
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3.1 EE profile and CVA on some financial products under B-S model

Some remarks on the computation of CV A0 for a forward contract :

• As for the call option, when λ increases, CV A0 also increases which is an expected
behavior because the counterparty is more likely to default.

• When we derive the equation for the CV A0 of a forward contract, we see that we cannot
get rid of the sign + in the positive exposure (Vt)+ as the value of the forward can become
negative. In this case, we need to perform the numerical integration given by (2.9). which
leads to additional computations over the life time of the contract. We cannot extend
the methodology to similar products as forward as it will depend if we can derive a close
formula for EPE(t).

A global remark on the computation of CV A0

• We illustrate the concept of calculation of the CV A for 2 products where we could have
an analytic valuation of the financial instrument V and where we could also derive the
EPE profile analytically but in a lot of cases we don’t have closed formulas for the price
of the financial instrument neither for the calculation of EPE which will result in a nested
Monte-Carlo procedure. This procedure can then be computationally intense and that’s
why we didn’t provide results for such a case.

We write below in Algorithm 3.1 the calculation of exposure based on a nested Monte-Carlo
and the Algorithm 3.2 for CV A0 computation based himself on Algorithm 3.1.

Algorithm 3.1 Nested Monte-Carlo for exposure profile computation
Input Parameters : M number of samples for the outer Monte-Carlo
N number of samples for the inner Monte-Carlo
ϕ the payoff function of the underlying risk factor S

for i = 0, . . . ,M − 1 do
Simulate the risk factor Si up to date tl denote by Si,tl using the forward dynamics of S
for j = 0, . . . , N − 1 do

Compute the risk factor dynamics until T starting from Si,tl at tl for each j path Sj
i,tl

end
Compute the price Ai =

1
N

∑N−1
j=0 (ϕ(S

j
i,tl
))+

end
Output Parameters : EPE(tl) = 1

M

∑M−1
i=0 Ai

Algorithm 3.2 Nested Monte-Carlo for CV A0 computation
Input Parameters : T maturity contract, timegrid t0 < t1 < . . . < tK = T , CV A0=0

for l = 0, . . . , K − 1 do
Calculate EPEtl according to Algorithm 3.1
Compute G(tl+1)−G(tl)
CV A0− = LGD ∗ EPE(tl) ∗ (G(tl+1)−G(tl))

end
Output Parameters : CV A0
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3.2 EE profile and CVA of an IRS under Hull & White and
G2++ models

We will now illustrate the calculation of the EPE profile and associated CV A0 in the case of
a vanilla interest rate swap under 2 models : Hull & White and G2 + +.

3.2.1 Pricing of an IRS

An interest rate swap is a financial derivative where two parties exchange interest rate cashflows,
typically one party pays a fixed interest rate (swap receiver) and the other pays a floating
interest rate (swap payer) which can be based on a reference rate. Let’s define the notations
we will used in the following :

• n : Number of Payments.

• τk = (Tk+1 − Tk) : Coupon frequency for the swap payments ∀k ∈ [[0;n− 1]].

• lk(t) = l(t, Tk, Tk+1) : The forward rate at time t for an investment starting at Tk−1 and
ending at Tk.

• B(t, Tk) : the price of a zero-coupon-bond at t which gives 1 at Tk.

• V (t) : The price of the swap at t.

• K : The fixed strike payed by the receiver of the swap.

• N : The notional of the swap.

From the point of view of the receiver of the swap , we can therefore see the accumulated
payments of the swap at the final date Tn assuming the same payment dates for the payer and
the receiver of the swap and the same notional N .

Vswap(Tn) = N
n−1∑
k=0

τk(lk(Tk)−K) = N
n−1∑
k=0

(Tk+1 − Tk)(l(Tk, Tk, Tk+1)−K).

By defining η(t) = min{i ∈ {0, . . . , n − 1} : Ti+1 > t}, we have the following pricing formula
for the value of the swap at t given by :

VSwap(t) = N

n−1∑
k=η(t)

τkB(t, Tk+1)(l(t, Tk, Tk+1)−K). (3.11)

Moreover, we can rewrite the forward rate l(t, Tk, Tk+1) in terms of zero-coupon bonds as :

l(t, Tk, Tk+1) =
1

τk
(
B(t, Tk)

B(t, Tk+1)
− 1).

With this reformulation, the formula for the swap reduces to :

VSwap(t) = N(B(t, Tη(t))−B(t, Tn)−K
n−1∑

k=η(t)

τkB(t, Tk+1)). (3.12)

If we assume that the payment frequency is assumed to be constant denoted by τk = δT , we
can simplify further (3.12).
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3.2.2 EE profile of an IRS

Because of the calculation of the exposure profile, we need to be able to calculate the quantities
(B(t, Tk))k∈[[1;N ]] ∀t ≥ 0 which requires the use of an interest rate model. We will first introduce
the Hull & White model and then the G2 + +.

The Hull & White Model :

The Hull & White model is is a short rate model denoted by (rt)t≥0 which is an extension of
the V asicek model with the following dynamics 4:

drt = (θ(t)− κr(t))dt+ σdWt, r0 ∈ R. (3.13)

with :

• r0 is the initial short rate value.

• κ is the speed of the mean reversion.

• σ is the volatility associated with the diffusion process.

• θ is a deterministic function which helps to calibrate the model to the initial zero-coupon
bond curve in the market (BMarket(0, t))t>0.

Proposition 3.1. The solution of the EDS 3.13 is given by :

rt = r0e
−kt +

∫ t

0

θ(u)e−k(t−u)du+ σ

∫ t

0

e−κ(t−u)dWu. (3.14)

Proof. Let’s consider the process Yt = rte
κt. By applying Itô to this process, we have :

dYt = eκt(κrtdt+ drt)

dYt = eκt(θ(t)dt+ σdWt)

The result follows by integrating over the interval [0, t] and multiplying by e−κt

Zero Coupon Bond Pricing under Hull & White Model :

Proposition 3.2. The price of a zero-coupon bond with maturity T at time t ≤ T B(t, T ) is
given by :

B(t, T ) = em(t,T )−n(t,T )rt . (3.15)

with :

n(t, T ) =
1− e−κ(T−t)

κ
,

m(t, T ) = −
∫ T

t

θ(u)η(u, T )du+
σ2

2

∫ T

t

η(u, T )2du.

4The discretisation scheme of the short rate process will be performed using the Euler method. See Annex
B for more details on the methodology.
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Proof. The results comes from the Markov property of the process r and from the Feymann-Kac
formula which is presented in proposition A.1 in Annexes. Indeed, we have :

B(t, T ) = EQ[e−
∫ T
t rsds|Ft].

B(t, T )
Markov
= F T (t, rt).

Using Feymann-Kac formula, we have that F T is solution of the following PDE :

{
∂FT

∂
(t, r) + (θ(t)− κr)∂FT

∂r
+ σ2

2
∂2FT

∂2r
− rF T (t, r) = 0 ∀(t, r) ∈ [0, T [×R,

F T (T, r) = 1.
(3.16)

Supposing an affine structure for B(t, T ) and therefore for F T (t, rt), we have the following
equation : ∀(t, r) ∈ [0, T [×R :

F T (t, r)

(
∂m(t, T )

∂t
(t, T )− r∂n(t, T )

∂t
(t, T )− (θ(t)− κr)η(t, T ) + σ2

2
η(t, T )2 − r

)
= 0. (3.17)

From the fact that F T is a stricly positive function and considering the terms in r or not, we
arrive to the following system of ordinary differential equations :

∂n

∂t
(t, T )− κn(t, T ) + 1 = 0. (3.18)

∂m

∂t
(t, T ) = θ(t)n(t, T )− σ2

2
n(t, T )2. (3.19)

The equation (3.18) can be solved explicitly and we recover the form from the proposition using
the fact that n(T, T ) = 0. Using the equation (3.19), we also recover the form of m using also
that m(T, T ) = 0.

Now, we need to characterize the form of θ to be able to compute prices of ZCB in the Hull
& White Model. For this , we need to introduce the instaneous forward rate denoted by f0(t)
defined by :

f0(t) = −
∂ln(B(0, t))

∂t
. (3.20)

Now, we have the following proposition :

Proposition 3.3. Assuming that ∀t ≥ 0, BMarket(0, t) are given by the market and θ takes the
following form :

θ(t) =
∂f0(t)

∂t
+ κf0(t) +

σ2

2κ
(1− e−2κt). (3.21)

Then, the Hull & White model reproduces exactly the initial ZCB price curve t→ BMarket(0, t).

28



3.2 EE profile and CVA of an IRS under Hull & White and G2++ models

Proof. Let’s derive the form of f0(t) when we omit the notation BMarket(0, t) and use instead
for ease of notation B(0, t).

f0(t) = −
∂lnB(0, t)

t
,

= −∂m(0, t)− n(0, t)r0
∂t

,

=

∫ t

0

θ(u)
∂n(u, t)

∂t
du− σ2

2

∫ t

0

∂n(u, t)2

∂t
+
∂n(0, t)

∂t
r0,

=

∫ t

0

θ(u)e−κ(t−u)du− σ2

2

∫ t

0

2

k
(1− e−κ(t−u))(e−κ(t−u))du+ e−κtr0,

= − σ2

2κ2
(e−κt − 1)2 +

∫ t

0

θ(u)e−κ(t−u)du+ e−κtr0,

= −g(t) + ϕ(t).

with :

g(t) =
σ2

2κ2
(e−κt − 1)2.

ϕ(t) =

∫ t

0

θ(u)e−κ(t−u)du+ e−κtr0.

Or, by deriving ϕ, we see that ϕ is solution to the following ordinary differential equation:

ϕ′(t) = −κϕ(t) + θ(t), ϕ(0) = r0.

Finally, we found that θ takes the following form :

θ(t) = ϕ′(t) + κϕ(t),

=
∂f0(t)

∂t
+
∂g(t)

∂t
+ κ(f0(t) + g(t)),

=
∂f0(t)

∂t
+ κf0(t) + (

∂g(t)

∂t
+ κg(t)),

=
∂f0(t)

∂t
+ κf0(t) +

σ2

2κ
(1− e−2κt).

Therefore, we recover the form of θ of the proposition (3.3) which ends the proof.
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A Sanity Check Implementation

As we have now derived all the parameters for the simulation of the short rate process, we are
going to do a sanity check implementation by comparing the groundtruth values of B(0, T )
from the market and the ones from the model as they should be close. We will consider that
the market initial zero coupon curve is given by B(0, t) = e−r0t.
First, we give some plots below of the simulation of the short rate process rt under Hull &
White model :

Figure 3.5: Simulation of rt under Hull & White model and different choices of parameters

Some remarks on the impact of the parameters on rt

• As we can see from the figures above, when κ increases, rt become less volatile which is
intuitive as κ controls the mean reversion speed of the short rate process rt.

• Also, when the volatility parameter σ tends to increase, rt become way more volatile but
the impact of σ is more impactful compared to the speed parameter κ.

We will check the accuracy of the implementation by comparing the approximation of the zero-
coupon bond price B(0, t) defined as EQ[e−

∫ t
0 rsds] following the algorithm 3.3 below based on

the Law of Large Numbers.

Algorithm 3.3 Sanity check implementation algorithm
Input Parameters : M Number of Paths, T timegrid 0 = t0 < t1 < . . . < tN = t,
((riu)u∈T )i∈[1,M ] dynamics of short rate over T for each i

for i = 1, . . . ,M do
Calculate e−

∫ t
0 risds by approximating

∫ t

0
risds by trapezoidal rule

∑N−1
j=0

1
2
(ritj+1

+ ritj)(ti+1− ti)
end

Output Parameters : Return B̂(0, t) = 1
M

∑M
i=1 e

−
∑N−1

j=0
1
2
(ritj+1

+ritj
)(tj+1−tj)
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Figure 3.6: Sanity check implementation of Hull & White model

After checking the implementation , we can therefore calculate the exposure profile of a
swap under this model.

We give in the table below the characteristics of the swap for which we performed the
exposition profile computation :

Table 3.1: Parameters of the swap used in the numerical experiments

Parameters Fixed Rate Tstart Tend Number of Payments
Value 0.01 1 Y 10 Y 10

Let’s see in the following plots the impact of the parameters on the EPE profile of the
swap.

Figure 3.7: Value of a swap and EPE profile with σ = 0.03 and κ = 0.5 under Hull & White
model with NMC = 20000 simulations
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Figure 3.8: Value of a swap and EPE profile with σ = 0.06 and κ = 0.5 under Hull & White
model with NMC = 20000 simulations

Figure 3.9: Value of a swap and EPE profile with σ = 0.03 and κ = 1 under Hull & White
model with NMC = 20000 simulations

Some remarks on the result :

• As we can see from the expected positive profile, we have several peaks which in fact
represent the payment dates every year from T = 1 to T = 10.

• We also observe that when σ increases, the EPE profile also increases which is expected
as the market price of the swap tends to become more volatile. Also, when κ increases,
the EPE profile tends to decrease which is also intuitive as we can expect from the figure
3.5 as rt becomes less volatile.

• At the beginning of the swap, his value is set to 0 and can become either positive or
negative like for a forward contract. At the end of the swap, the value becomes 0 and so
goes the EPE profile which is also intuitive.
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Some CV A0 profiles :

Figure 3.10: Evolution of the CV A0 profile of an IRS as a function of intensity default λ for
σ = 0.03 (right) and σ = 0.06 (left) with κ = 0.5 and RC = 0.4

Some remarks on the computation of CV A0 for an IRS under Hull & White model

• As we can see and from the expected exposure profile, when σ increases, the CV A0 also
increases which is expected.

• As we said previously, the value of CV A0 also increases with the default intensity λ as
the counterparty is more likely to default.

The G2 + + Model :

The G2 + + model is a short rate model where r(t) takes the following form:

r(t) = x(t) + y(t) + ϕ(t). (3.22)

with :

• r(t) the short interest rate at t.

• dx(t) = −κxx(t)dt+ σxdWx(t) the 1st gaussian factor.

• dy(t) = −κyy(t)dt+ σydWy(t) the 2nd gaussian factor.

• ϕ(t) = f(0, t) + σ2
x

2κ2
x
(1− e−κxt)2 +

σ2
y

2κ2
y
(1− e−κyt)2 + ρσxσy

κxκy
(1− e−κxt)(1− e−κyt).

• d < Wx,Wy >t= ρdt.

• f(0, t) the instantenous forward rate at t.

We omit the proof of the form of ϕ as it is similar to θ for the Hull & White model.5.

5See [7] the book from Brigo and Mercurio where the main results on interest rate modelling are presented.
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Some numerical results :

We give below some illustration of the evolution of rt for some scenarios.

Figure 3.11: Simulation of rt under G2 + + model and different choices of parameters

Some remarks on the dynamic of rt :

• As we can see from the plots above, the volatility of the first gaussian factor σx plays a
crucial role in the range of values that the short rate process rt can take.

• It’s not as simple to analyze the impact of the parameter κx as it was in the Hull & White
model as we are now considering a two factor model.

Zero Coupon Bond Pricing under G2++ model :

Proposition 3.4. The price of a zero-Coupon Bond with maturity T at time t ≤ T B(t, T ) is
given by :

B(t, T ) =
BM(0, T )

BM(0, t)
eA(t,T ). (3.23)

with :

A(t, T ) =
1

2
(V (t, T )− V (0, T ) + V (0, t))− 1− e−κx(T−t)

κx
x(t)− 1− e−κy(T−t)

κy
y(t).

V (t, T ) = −σ
2
x

κ2x
(T − t+ 2

κx
e−κx(T−t) − 1

2κx
e−2κx(T−t) − 3

2κx
)

+
σ2
y

κ2y
(T − t+ 2

κy
e−κy(T−t) − 1

2κy
e−2κy(T−t) − 3

2κy
)

+
2ρσxσy
κxκy

(T − t+ e−κx(T−t) − 1

κx
+
e−κy(T−t) − 1

κy
− e−(κx+κy)(T−t) − 1

κx + κy
).

Proof. We start from the definition of B(t, T ) as :

B(t, T ) = EQ[e−
∫ T
t rsds|Ft],

B(t, T ) = EQ[e−
∫ T
t (xs+ys+ϕs)ds|Ft].
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To compute, we need to characterize the law of the following random variable conditionally to
Ft :

I(t, T ) =

∫ T

t

(x(u) + y(u))du, ∀ 0 ≤ t < T.

Following [7] , we can show that I(t, T ) is a gaussian variable with mean M(t, T ) and variance
V (t, T ) given by :

M(t, T ) =
1− e−κx(T−t)

κx
x(t) +

1− e−κy(T−t)

κy
y(t).

V (t, T ) =
σ2
x

2κ2x
(T − t+ 2

κx
e−κx(T−t) − 1

2κx
e−2κx(T−t) − 3

2κx
)

+
σ2
y

2κ2y
(T − t+ 2

κy
e−κy(T−t) − 1

2κy
e−2κy(T−t) − 3

2κy
)

+
2ρσxσy
κxy

(T − t+ e−κx(T−t) − 1

κx
+
e−κy(T−t) − 1

κy
− e−(κx+κy)(T−t) − 1

κx + κy
).

Now, from the lemma which says that if Z is a random variable with mean µ and variance σ2,
we know that E[eZ ] = eµ+

σ2

2 , we therefore have :

B(t, T ) = eM(t,T )+ 1
2
V (t,T )−

∫ T
t ϕ(u)du. (3.24)

Now, we see that the model fits exactly the market curve of discount factors if and only if we
have :

BMarket(0, T ) = e−
∫ T
0 ϕ(u)du+ 1

2
V (0,T ).

Therefore, we have that

e−
∫ T
t ϕ(u)du = e−

∫ T
0 ϕ(u)due

∫ t
0 ϕ(u)du,

e−
∫ T
t ϕ(u)du =

B(0, T )

B(0, t)
e−

1
2
(V (0,T )+V (0,t)).

Putting this formula into (3.24), we recover the result of the proposition.
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Some numerical results :

We will provide some numerical results for an IRS in the G2++ model, starting from a sanity
check implementation and then providing exposure rofiles under different model parameters
and associated CV A0.

Sanity Check Implementation :

We also provide a sanity check implementation by comparing the ZCB from the model and
them from a fictious market where B(0, t) = e−r0t.

Figure 3.12: Sanity check implementation of G2++ Model

As we can see, there is a good adequation between the initial bond market price from the
market and from the model which acts like a validation of our implementation. we can now
derive some exposure and CV A0 profiles for an interest rate swap under the G2 + + model.
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Some exposure profiles :

Figure 3.13: Value of a swap and EPE profile with ρ = −0.99 under the G2 + + model

Figure 3.14: Value of a swap and EPE profile with ρ = 0 under the G2 + + model

Figure 3.15: Value of a swap and EPE profile with ρ = 0.99 under the G2 + + model
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Some remarks on the computation of EE profile for an IRS under G2 + + model

• First, we can see that the profile of exposure has some jumps which reflect the moment
when a payment has been done. Moreover, the profile is really different from what we
saw for equity products : call and forward.

• For the G2 + + model, we provided some results when changing the ρ parameter and it
ends up that when ρ increases, the exposition profile also increases, meaning that we have
an higher exposition in a G2 + + model with ρ next to 1.

Some CV A0 profiles :

Figure 3.16: Evolution of the CVA profile as a function of intensity default λ for ρ = −0.99
(right) and ρ = 0.99 (left) with RC = 0.4

Some remarks on the computation of CV A0 for an IRS under G2 + + model

• As we can see, as the default intensity increases, the CVA also increases which is expected
but the behavior doesnt seem to be same if we used different ρ.

• Moreover, as we said before, if ρ increases, it seems to have an higher exposure which
leads to an higher CV A which is also illustrated in the plots above. In practice, when
practicioners are calibrating their G2 + + model , an usual ρ parameter is around −0.9
which seems to leading to a lower CV A. 6

6Note that the results could have been different if we choose a different set of parameters : κx, κy, σx and
σy.
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3.3 EE profile of some bermudan options
In this subsection , we will be interested in the computation of the EE profile of some bermudan
Options as they are quite different from european options by the fact they can be exercised
prior to maturity. We will mainly refer to the so called Least Square Monte-Carlo Method
introduced in [8] by Tsitsilikis and Van Roy and in [9] by Longstaff and Schwartz to compute
the price of such products. We will illustrate it with an interest rate swaption under the Hull
& White model and for a put under the B − S model.

3.3.1 The LSMC algorithm for pricing bermudan options

We will assume a probability space (Ω,F ,Q) and a finite interval [0, T ]. We admit that Q
represents a risk neutral measure. We consider a stochastic process (Xt)t∈[0,T ] which generates
the filtration (F = Ft)t∈[0,T ].

The pricing of an american option

As we said, unlike european options, american Options can be exercised prior to the maturity
of the contract. For instance, if we consider a call option with maturity T on the stock price
(St)t∈[0,T ], with an american option, you can exercise your option at any time before maturity
and receive the payoff (St −K)+ at the time t.
To maximize their profits, the holder of the contract will try to exercise the option at the time
that maximizes the discounted payoff. Therefore, we see that pricing an american option is
equivalent to an optimal stopping problem on the space of T[t,T ] composed of all the stopping
times adapted to F with values in [t, T ]. The price of such a product is therefore defined as :

PAmerican
t = sup

τ∈T[t,T ]

EQ[B(t, τ)ϕ(Sτ )|Ft]. (3.25)

where :

• ϕ is the payoff of the option.

• S is the underlying of the derivative.

• B(t, τ) is the discount factor between t and τ .

As we can see, the pricing of an american option is particularly hard as the option can be
exercised at any time before the maturity T and it leads to a more challenging computational
challenge than the pricing of european options.

The pricing of a bermudan option

We will consider an easier problem by considering bermudan options which are options that
can only be exercised at discrete times prior to maturity. Let consider N +1 potential different
exercise times 0 = T0 < T1 < . . . < TN = T . The price of a bermudan option is similarly to the
american option defined as the time over the timegrid T grid = {T0, T1, . . . TN} that maximizes
the discounted payoff. Pricing a Bermudan option is also an optimal stopping problem over
T grid ∩ [t, T ] denote by T Bermudan. The price of the Bermudan option is therefore given by :

PBermudan
t = sup

τ∈T Bermudan

EQ[B(t, τ)ϕ(Sτ )|Ft]. (3.26)
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Following the Snell Enveloppe Theory 7 , it has been proven that the price of the bermudan
option at each time of T Bermudan is given by a a dynamic programming approach. 8.

Algorithm 3.4 Bermudan option pricing with dynamic programming approach
Input Parameters : T maturity contract, timegrid T = {0 = T0 < T1 < . . . < TN = T}
PBermudan
TN

= ϕ(STN
)

for i = N − 1, . . . , 0 do
CTi

= EQ[B(Ti, Ti+1)P
Bermudan
Ti+1

|FTi
]

PBermudan
Ti

= max(ϕ(STi
), CTi

)

end
Output Parameters : Price of Bermudan Option (PBermudan

t )t∈T

The quantity CTi
= EQ[B(Ti, Ti+1)P

Bermudan
Ti+1

|FTi
] is called continution value at time Ti. The

dynamic programming algorithm is a backward algorithm which can be understood as follows.
At each time, the holder of the contract can either exercise the contract or hold it to the next
date. If the current payoff ϕ(STi

) exceeds the continuation value, then the holder will exercise
his option. Otherwise, he will continue holding his option. As we can see, the challenging
point in the Algorithm 3.4 is to compute the conditional expectation at each time. For this,
we will assume that the process (Xt)t∈[0,T ] is markovian so we can write the continuation value
as follows.

CTi
= EQ[B(Ti, Ti+1)P

Bermudan
Ti+1

|XTi
] ∀i ∈ [[1, N − 1]]. (3.27)

Therefore, we know that there exist ϕTi
a borelian measurable function such that CTi

= ϕTi
(XTi

)
and we will try to approximate this function ϕTi

.
The idea behind Longstaff-Schwartz Algorithm was to approximate ϕTi

using a suitable set of
basis function denote by ψ = (ψi

k)k∈[1,M ] and associated coefficients βi = (βi
k)k∈[1,M ] such that

we have:

ϕTi
≈

M∑
k=1

βi
kψ

i
k = ⟨βi, ψi⟩. (3.28)

where ⟨., .⟩ is the usual scalar product on RM .
The choice of the set of basis function and of the number of factors M are crucial points as

they influence the accuracy of the continuation value approximation. Classic basis functions are
polynomials on XTi

, Laguerre, Hermite or Legendre. The choice of the coefficients (aik)k∈[1,M ]

is done by using the conditional expectation representation as a minimization problem as pre-
sented in Annexes A.4 after choosing (ψi

k)k∈[1,M ].

β̂i = argminβEQ[∥CTi
− ⟨βi, ψi⟩∥2]. (3.29)

Therefore, the continuation value is approximated by :

CTi
(XTi

) ≈ ⟨β̂i, ψi⟩(XTi
). (3.30)

Using this dynamic programming approach, we can therefore evaluate the price of the bermudan
at various nodes and discretization times and the exposure is calculated as follows :

EEBermudan(t) = (V Bermudan
t )+1τ>t. (3.31)

7See https://people.math.ethz.ch/~mschweiz/Files/bermuda_final.pdf for more theory.
8Note that this approach could be also performed with european options by taking PEuropean

Ti
= CTi
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3.3.2 Some numerical results

We will illustrate the calculation of the exposure in the case of a bermudan put under the B−S
model and a Bermudan swaption under the Hull & White model.

A bermudan put :

We consider the case of a bermudan put in a B−S model such that the problem reformulation
is as follows :

PBermudan
t = sup

τ∈T Bermudan

EQ[e−r(τ−t)(K − Sτ )
+|Ft]. (3.32)

We consider at each time step Ti a polynomial basis function of STi
up to the degree 20 meaning

that we approximate the continuation value at Ti as :

CTi
(STi

) ≈
20∑
k=1

βi
kS

k
Ti
. (3.33)

Figure 3.17: Calculation of the EPE profile of a bermudan put under B − S model with the
following parameters : (S0 = 100, K = 100, r = 0.04, σ = 0.2, T = 1 and N = 13)

Some remarks :

• We see that at time t = 0 the exposure or equivalently the price of the bermudan option
is higher than the european one which is something expected as the bermudan offers the
potential exercise before maturity.

• We choose a polynomial basis function and we show that for the EPE profile in the case
of the european put is quite similar with the true value.

• One interesting fact is during the last timestep between Tn−1 and Tn, the option be-
comes an european style one and we recover the type of exposure of the european option
(constant during the last period).
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A Bermudan swaption

We also consider the case of a bermudan swaption in the Hull & White model. A swaption is
an option which allows the holder to enter on a swap and the payoff assume that the exercise
date of the option is at the beginning of the swap denoted by T0. Therefore, the payoff of the
option is given by :

(Vswap(T0))
+.

The price of the bermudan swaption can therefore be written as :

V BermudanSwaption
t = supτ∈T BermudanEQ[B(t, τ)Vswap(τ)

+|Ft]. (3.34)

We give below the figure for the bermudan swaption 9 where we suppose that the early-
exercise dates are defined by the payment dates of the swap. We also exclude the final date TN
from being a payment date so there are only only 9 exercise dates here.

Figure 3.18: Calculation of the EPE profile of a bermudan swaption under the Hull & White
model with the following parameters : (r0 = 0.01, κ = 0.5, σ = 0.02, T = 10) with payment
dates and potential exercise dates given by T1 = 1, T2 = 2 , . . ., T9 = 9 with a nominal of
N = 10000.

Some remarks :

• We observe that the expected exposure of the swaption is higher than the exposure of
the corresponding underlying swap which is expected as it permits to his holder to decide
if he wants to enter to the swap. Moreover, a swap exposure can either be positive or
negative for the counterparty whereas a swaption is an option which will implies an higher
exposure.

• As we said, after the payment T9, both value of the swap and bermudan swaption become
zero because T10 is excluded.

9Additional Plots are available on the Annex E a Bermudan Call, Max-Call and Min Put on d = 2 assets
options
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3.4 EE profile of a portfolio

3.4 EE profile of a portfolio
On this last section, we will illustrate the impact of netting on the exposition profile of a
portfolio.

3.4.1 A quick overview of the model setup

We will consider the following model with the short rate process r = (rt)t≥0 assumed to follow
a G2 + + model with a zero coupon bond market given by B(0, t) = e−r0t.

dS1
t = S1

t (r(t)dt+ σ1dW 1
t ), S1

0 = S0 ∈ R+
∗ ,

dS2
t = S2

t (r(t)dt+ σ2dW 2
t ), S2

0 = S0 ∈ R+
∗ ,

dS3
t = S3

t (r(t)dt+ σ3dW 3
t ), S3

0 = S0 ∈ R+
∗ ,

r(t) = x(t) + y(t) + ϕ(t), r0 = r0 ∈ R.

We will assume the following correlation matrix for the risk factors by denoting by W x and W y

respectively the risk factors for x and y in the G2 + + model.

Table 3.2: Correlation matrix of the risk factors in the portfolio model

Risk Factors W 1
t W 2

t W 3
t W x

t W y
t

W 1
t 1 ρ1,2 ρ1,3 0 0

W 2
t ρ1,2 1 ρ2,3 0 0

W 3
t ρ1,3 ρ2,3 1 0 0

W x
t 0 0 0 1 ρx,y

W y
t 0 0 0 ρx,y 1

We also give in the table below the parameters used in the modelling of the portfolios
exposure :

Table 3.3: Parameters used in the numerical experiments for the global portfolio

Parameters κx σx κy σy σ1 σ2 σ3 S0 r0
Value 0.6 0.06 0.15 0.04 0.2 0.1 0.1 100 0.01

3.4.2 Some numerical results

We will consider 2 cases in the calculation of the EE to see the impact of netting :

• A simple portfolio with 2 swaps : one payer and one receiver with same final payment
date Tn = 10 with strike rate K = 0.01 but with different payment dates and starting
date.

• A simple portfolio with 3 long positions in a forward contract written on each underlying
(Si)i∈[[1;3]] with strike set at the money forward 10 and maturity T = 10.

10It means that we set K such that S0 −KB(0, T ) = 0 that is to say K = S0

B(0,T ) .

43



3.4 EE profile of a portfolio

Figure 3.19: Impact of netting in 2 simple portfolios with the following parameters : (ρ12 =
−0.8, ρ13 = −0.7, ρ23 = −0.6 and ρxy = 0)

Figure 3.20: Impact of netting in 2 simple portfolios with the following parameters : (ρ12 = 0.3,
ρ13 = 0.4, ρ23 = 0.5 and ρxy = −0.99)

Some remarks on the result :

• As we can see, the global EE of the portfolio is reduced and this will lead to a lower
CV A as we mentioned in the previous chapter. The impact of netting for portfolios can
then be seen as an important way to reduce the CV A cost.

• We can also see that under the fact the stocks price are uncorrelated with ρ13 = 0.8,
the exposure of the portfolio with netting is really way lower from the exposure of the
portfolio without netting and therefore according to model parameters, the impact of
netting can be really important.
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Chapter 4

Taking into account the Wrong Way Risk

In this chapter, a discussion about the impact of the Wrong Way Risk (WWR) in XV As
computation will be proposed. In a first section, the Cox setup will be introduced and will
be the key point of the modelling of the WWR. Some numerical results on basic financial
products will be proposed to see the relevance of the WWR in the CV A0 computation. In the
second section, a new approach introduced in [11] by Brigo and Vrins will be discussed. This
approach consists in embedding WWR in a new probability measure using a deterministic drift
adjustment. Some numerical results will also be proposed to see the relevance of the method.
Finally, the impact of WWR on the computation of FV A will be studied with some numerical
results on an interest rate swap.

4.1 The Wrong Way Risk for CVA

4.1.1 Mathematical framework under the Cox setup

As a starting point, we need to come back to the expression of the CV A0 we derived in (2.7).
We assumed that τ admits a density towards Lebesgue with G(t) = Q(τC ≥ t) that :

CV A0 = −(1−RC)
∫ T

0
EQ[ (Vt)+

Bt
|τC = t]dG(t).

Now and instead of what we did previously, we won’t suppose the independance between τC

and (Vt)t∈[0,T ] and therefore we need an appropriate modelling of the quantity EQ[ (Vt)+

Bt
|τC = t].

For this, we need to introduce an important tool which is called F−Azéma supermartingale
S = (St)t∈[0,T ] defined as follows:

St = EQ[1τC>t|Ft] = Q[τC > t|Ft].

Remark. We can observe that EQ[St] = G(t) which is referred to the calibration equation as
in practice G will be given by the market and therefore the dynamics of S needs to be calibrated
using this equation.

We can observe that S is indeed a F− supermartingale as for 0 < s < t

EQ[St|Fs] = EQ[EQ[1τC>t|Ft]Fs]

= EQ[1τC>t|Fs]

≤ EQ[1τC>s|Fs] = Ss.

The supermartingale S has been introduced because there is an important result usually
referred as Key-Lemma in the litterature which allows to write CV A0 as follows : 1

1The proof of this lemma can be found in Lemma 3.1.3 in [12].
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4.1 The Wrong Way Risk for CVA

CV A0 = (1−RC)EQ[
(VτC )

+

BτC
1τC≤T ] = −(1−RC)EQ[

∫ T

0

(Vt)
+

Bt

dSt]. (4.1)

Now, we see that we are able to derive an equivalent formula to (2.8) but we are considering
S instead ofG. Even if we have another theoretical representation of the CV A with the equation
(4.1), we have to specify a form for S to make this formula useful in practice. An important
setup is the case when S is assumed to follows a Cox Process that is to say S = (St)t≥0 is a
positive decreasing process starting from S0 = 0 with zero quadratic variation defined by : 2

St = e−
∫ t
0 λsds. (4.2)

with λ = (λt)t∈[0,T ] a positive F-adapted process. This definition of S is higly appreciable as it
allows an easy simulation of the default event τC according to the following proposition :

Proposition 4.1. By defining τC as the following in the Cox setup :

τ = inf{t ≥ 0 :

∫ t

0

λsds ≥ v}. (4.3)

where v denotes an exponential variable under Q with parameter 1 and assumed to be indepen-
dant from G. Therefore, the process S is well defined with St = e−

∫ t
0 λsds.

Proof. Let’s consider v an exponential variable with parameter 1 assumed to be independant
from G. We then have that considering that λ is a stochastic process F-adapted : Q(τC >

t|Ft) = Q(v >
∫ t

0
λsds|Ft) == e−

∫ t
0 λsds = St which ends the proof

Coming back to to the expression (4.1), we have the dynamics of St given by dSt = −λtStdt.
If we now considerer the following process ξ = (ξt)t∈[0,T ] defined as :

ξt =
λtSt

h(t)G(t)
. (4.4)

We can therefore write the CV A0 including WWR as follows :

CV A0 = −(1−RC)

∫ T

0

EQ[
(Vt)

+

Bt

ξt]dG(t). (4.5)

As we saw in the first section, we can now derive an EPE function which now contains the
WWR as follows :

EPE(t) = EQ[ (Vt)+

Bt
ξt].

Remark. We can also verify the consistency of the approach by verifying that under indepen-
dance of the processes V and λ, we have :

CV A0 = −(1−RC)
∫ T

0
EQ[ (Vt)+

Bt
]EQ[ξt]dG(t).

Or, we have assuming suitable integrability properties :

EQ[λtSt] = −EQ[ d
dt
St] = − d

dt
EQ[St] = −G′(t) = h(t)G(t).

So we have the following property for ξ :

EQ[ξt] = 1, ∀t ∈ [0, T ].

Therefore, it shows that the approach is consistent in the case of independance.
2The Cox process setup is widely used in quantitative finance in the modelling of credit risk.
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4.1 The Wrong Way Risk for CVA

4.1.2 Some numerical results

As we see the CV A0 under WWR needs the computation of the quantity EQ[ (Vt)+

Bt
ξt]. We will

assume a CIR model for the process λ as it is the most common choice in the litterature and
as it provided closed formulas. For this we will rely to the following proposition which gives an
analytic formula for G(t).

Proposition 4.2. Assuming a process λ = (λt)t≥0 following a CIR process 3 with the following
dynamic under a probability measure Q

dλt = κλ(θλ − λt)dt+ σλ
√
λtdWt, λ0 ∈ R+

∗ . (4.6)

Therefore, the process λ is said to be affine as the quantity EQ[e−
∫ s
t λudu|Ft] has the following

form :

Bλ(t, s) = EQ[e−
∫ s
t λudu|Ft] = Aλ(t, s)e−Dλ(t,s)λt .

with :

• Dλ(t, s) = ehτ−1
h+κ+h

2
(ehτ−1)

.

• Aλ(t, s) = (
h exp(κ+h

2
τ)

ehτ−1
Dλ(t, s))

2κλθλ

(σλ)2 .

• τ = s− t and h =
√

(κλ)2 + 2(σλ)2.

and the quantity Q(τ > t) can then be calculated as :

G(t) = Q(τ > t) = EQ[e−
∫ t
0 λsds].

Proof. The proof of this result is based on solving the Ricatti equations associated with the
process. Starting from the fact that Bλ(t, s) has an affine structure which will be assumed and
using as we did in the previous chapter the PDE representation of P λ, we can show that Aλ

and Dλ are solution to the following system of differential equations 4 :

∂tD
λ(t, s)− κDλ(t, s)− 1

2
σ2Dλ(t, s)2 + 1 = 0, D(s, s) = 0.

∂t(ln(A
λ(t, s)))− κθDλ(t, s) = 0, A(s, s) = 1.

Solving this system leads to the form of the theorem.

From now, we are now able to derive the analytic formula for G(t) and we will also compute
h(t) as follows : 5

h(t) = −∂ln(G(t))
∂t

. (4.7)

We are now able to compute the process ξ and derive the exposure profile under Wrong Way
Risk. We will illustrate this concept with 3 different financial instruments, namely an european
call and a forward contract under the B − S model and an interest rate swap under the Hull
& White model.

3Under the Feller condition which is (2κλθλ > (σλ)2), λ is a strictly positive process.
4The proof of this result can be found in [7] the book of Brigo and Mercurio about Interest Rate Modelling.
5Numerically, we will calculate h by approximating the derivative.
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4.1 The Wrong Way Risk for CVA

We give below the intensity default λ parameters we used for the numerical results :

Table 4.1: Parameters used in the numerical experiments for the intensity of default process
under Wrong Way Risk

Parameters λ0 κλ θλ σλ

Value 0.12 0.35 0.12 0.12

To model the WWR, we will according to the model dynamics suppose that the random-
nesses are correlated using a parameter ρ.

An european call : In this case, we consider the following model :

dSt = St(rdt+ σdW 1
t ), S0 ∈ R+

∗ .

dλt = κλ(θλ − λt)dt+ σλ
√
λtdW

2
t .

d < W 1
t ,W

2
t >t= ρdt.

Figure 4.1: EPE Profile of a call under WWR with the following parameters : (S0 = 100,
K = 100, r = 0.03 , σ = 0.2 , T = 1 ) and corresponding CV A0 as a function of ρ.
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4.1 The Wrong Way Risk for CVA

A forward contract : Under the same model dynamics, we also provide the results obtained
when considering a forward contract.

Figure 4.2: EPE Profile of a forward under WWR with the following parameters : (S0 = 100,
K = 100, r = 0.03, σ = 0.2, T = 1 ) and corresponding CV A0 as a function of ρ.

An interest rate swap in the Hull & White model : In this case, we will consider the
following model dynamics :

drt = (θ(t)− κrt)dt+ σdW 1
t , r0 ∈ R.

dλt = κλ(θλ − λt)dt+ σλ
√
λtdW

2
t .

d < W 1,W 2 >t= ρdt.

Figure 4.3: EPE Profile of an IRS under WWR with the following parameters : (r0 = 0.01,
κ = 0.35, σ = 0.03 with a fictious initial ZCB curve given by P (0, t) = e−r0t) and corresponding
CV A0 as a function of ρ.

Some remarks on the results :

• As we can see from the plots above, the impact of WWR is not negligible and has to be
taken account when we are valuing EE of various financial products.

• In theses cases, we are in situation of Wrong Way Risk as when ρ increases, the exposition
to the default increases also.
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4.2 A new way to tackle the WWR for CVA : a measure change

4.2 A new way to tackle the WWR for CVA : a measure
change

We will now introduce the new approach introduced in the paper [11] of Brigo and Vrins to
tackle the WWR issue with a probability change measure and a drift adjustment.

4.2.1 The Wrong Way Measure

Let’s consider the following process (CF ,t
s )s∈[0,t] defined by :

CF ,t
s = EQ[

Bs

Bt

λtSt|Fs] = BsEQ[
1

Bt

λtSt|Fs]. (4.8)

As the process (M t
s)s∈[0,t] defined by M t

s = EQ[ 1
Bt
λtSt|Fs] clearly defines a positive F-martingale

on the filtration generated by the brownian motion W driving the exposure, we can therefore
using the martingale representation theorem 6 say that there exists (γs)s∈[0,t] an F-adapted
process such that :

dM t
s =M t

sγsdWs.

We can therefore derive the dynamics of CF ,t as follows :

dCF ,t
s = dBsM

t
s +BsdM

t
s = rsBsM

t
sds+BsM

t
sγsdWs = rsC

F ,t
s ds+ CF ,t

s γsdWs.

We see that the process CF ,t grows as the risk free rate. As it’s a strictly positive process, we
can define the following Radon-Nikodym process 7 :

Zt
s =

CF ,t
s B0

CF ,t
0 Bs

=
M t

s

M t
0

=
EQ[λtSt

Bt
|Fs]

EQ[λtSt

Bt
]
. (4.9)

Then defining the probability measure QCF,t such as dQCF,t

dQ

∣∣∣
Fs

= Zt
s and going back to formula

(4.5), we can calculate the quantity EQ[ (Vt)+

Bt
ξt] as follows using the Bayes Lemma :

EQ[
(Vt)

+

Bt

ξt] = ECF,t

[
CF ,t

0

CF ,t
t

ξt(Vt)
+] =

CF ,t
0

h(t)G(t)
ECF,t

[(Vt)
+] = ECF,t

[(Vt)
+]EQ[

ξt
Bt

]. (4.10)

Finally, we are able to derive a new formula for the CV A under WWR using the new measure
QCF,t . As we can see the formula is very similar to (4.5) except that we have to evaluate the
exposure under the new probability measure and the bank account numeraire appears in the
expectation embedding the credit risk. We can thereby derive a new formula for the EPE
function under WWR :

EPE(t) = ECF,t

[(Vt)
+]EQ[

ξt
Bt

]. (4.11)

6See Annex A.5 for a proof of this result.
7See Annex A.2 for an introduction to the Bayes Lemma and the definition of the Radon-Nikodym process

in such a setting.
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Remark. If we assume independance between the risk-free rate and the credit which is a com-
mon assumption in the industry, then we can write EQ[ ξt

Bt
] = EQ[ 1

Bt
] = P r(0, t) = EQ[e−

∫ t
0 rsds].

We can write the CVA taking account the WWR under this assumption as follows :

CV A0 = −(1−RC)

∫ T

0

ECF,t

[(Vt)
+]P r(0, t)dG(t). (4.12)

4.2.2 Drift adjustment for exposure modelling

In this subsection, we will assume that the portfolio value V and the credit risk intensity λ
are driven by a one dimensional Q brownian motion namely W V and W λ and we will keep the
assumption that W λ is uncorrelated with the short-rate risk driver.

We assume the following dynamics for the portfolio V where µ = (µs)s≥0 and σ = (σs)s≥0

are assumed to be continous and F adapted processes.

dVs = µsds+ σsdW
V
s . (4.13)

From the Girsanov Theorem 8 and by the fact that the process CF ,t is the numeraire associated
to the probability measure QCF,t , we have that the process W̃ V = (W̃ V

s )s∈[0,t] defined by :

W V
s −

∫ s

0

d⟨W V , ln(CF ,t)⟩u

is a QCF,t brownian motion adapted to F. Following the dynamics of CF ,t, it is clear that we
have the following dynamic for the portfolio V under QCF,t :

dVs = (µs + θts)ds+ σsdW̃
V
s . (4.14)

where θts is the drift adjustment. We also know that we have the following relation for the
process θ :

θtsds = σsd⟨W V , ln(CF ,t)⟩s.

We see that we now need to evaluate the covariation between the 2 processes W V and ln(CF ,t).
For this, we need to go back to the definition of the process CF ,t in (4.8). Assuming like we said
independance between risk free rate and credit risk and the fact that λ is a F-adapted process,
we have :

CF ,t
s = −Br(s, t)SsEQ[λte

−
∫ t
s λudu|Fs] = −Br(s, t)Ss

∂Bλ(s, t)

∂t
. (4.15)

where :

• Bλ(s, t) = EQ[e−
∫ t
s λudu|Fs].

• Br(s, t) = EQ[e−
∫ t
s rudu|Fs].

8See Annex A.3 for a proof of this result.
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4.2 A new way to tackle the WWR for CVA : a measure change

As we see, we know need to continue the computations to specify a form for P λ(s, t). We
will considerer the classic framework of affine stochastic processes for both the risk free rate r
and the the default intensity process λ. We therefore choose the following modelling :

drs = µr
sds+ σr

sdW
r
s

.dλs = µλ
sds+ σλ

s dW
λ
s .

such as we have d⟨W r,W λ⟩ = 0 and the drift and diffusion coefficients have the following forms
for x ∈{r, λ} :

µx
s = ax(s) + bx(s)xs

.σx
s =

√
cx(s) + dx(s)xs.

with ax, bx, cx and dx being deterministic functions which will be specify later. In the classical
theory of interest rate pricing with affine models, we know how to evaluate a zero coupon bond
assuming such dynamics and it ends up that :

Br(s, t) = Ar(s, t)e−Dr(s,t)rs

.Bλ(s, t) = Aλ(s, t)e−Dλ(s,t)λs .
(4.16)

with Ax and Bx being solutions to Ricatti ordinary differentials equations that we don’t
need to specify here. As we know have the form of Bλ, we can therefore write :

∂Bλ(s, t)

∂t
=
∂Aλ(s, t)

∂t
e−Dλ(s,t)λs − ∂Dλ(s, t)

∂t
λsB

λ(s, t) = Bλ(s, t)(
∂Aλ(s,t)

∂t

Aλ(s, t)
− λs

∂Dλ(s, t)

∂t
).

Therefore, we have the following dynamic for ln(CF ,t) using the affine structure of both Br

and Bλ. We refer to [11] for the complete proof.

dlnCF ,t
s = d

(
−ln(Ss) + ln(Br(s, t)) + ln(Bλ(s, t)

)
+ ln

(
∂Aλ(s,t)

∂t

Aλ(s, t)
− λs

∂Dλ(s, t)

∂t

)

dlnCF ,t
s = (...)ds−Dλ(s, t)dλs −Dr(s, t)drs +

1
∂Aλ(s,t)

∂t

Aλ(s,t)
− λs ∂D

λ(s,t)
∂t

d

(
∂Aλ(s,t)

∂t

Aλ(s, t)
− λs

∂Dλ(s, t)

∂t

)

dlnCF ,t
s = (...)ds+

(
Aλ(s, t)∂D

λ(s,t)
∂t

Aλ(s, t)∂D
λ(s,t)
∂t

λs − ∂Aλ(s,t)
∂t

−Dλ(s, t)

)
σλ
s dW

λ
s −Dr(s, t)σr

sdW
r
s .

From the dynamic and introducing the instant correlation between risk factors ρλs and ρrs
such as we have d⟨W V ,W λ⟩s = ρλsds and d⟨W V ,W r⟩s = ρrsds, we have the following expression
for the drift adjustment :

θts = ρλsσsσ
λ
s

(
Aλ(s, t)∂D

λ(s,t)
∂t

Aλ(s, t)∂D
λ(s,t)
∂t

λs − ∂Aλ(s,t)
∂t

−Dλ(s, t)

)
− ρrsσsσr

sD
r(s, t). (4.17)
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Deterministic approximation of the drift adjustment : As we want to focus on the
impact of the WWR, we will assume deterministic risk free rates and correlation so the drift
adjustment simplifies to :

θts = ρλsσsσ
λ
s

(
Aλ(s, t)∂D

λ(s,t)
∂t

Aλ(s, t)∂D
λ(s,t)
∂t

λs − ∂Aλ(s,t)
∂t

−Dλ(s, t)

)
. (4.18)

However, at this point even if we found an expression of the drift adjustment θt, it still has a
stochastic behavior and in order to reduce the dimensionality of the problem , we can look for
deterministic approximations of θts noted θ(s, t). In [11], they propose 2 possibilities :

• Replace λs in (4.18) by his expected value λ̄(s) = EQ[λs].

• Replace λs in (4.18) by the implied hazard rate h(s).

Remark. They justify the connections between the two potential approximations by the fact
that assuming that CovQ[λt, St] = o(EQ[St]), we then have :

h(s) = − d

ds
ln(G(s)) = −G

′(s)

G(s)
=

EQ[λsSs]

EQ[Ss]
= λ̄(s) +

CovQ[λs, Ss]

EQ[Ss]
≈ ¯λ(s). (4.19)

Calibration step of the model : As the calibration equation G(t) = EQ[St] needs to be
verified, it means that we cannot decide to use only a CIR model for the process λ. We will
need a deterministic shift ϕ which allows the calibration equation to be verified. Therefore, λ
can be written as :

λt = yt + ϕ(t). (4.20)

where :

• y is a CIR process with the following parameters : y0 = h(0), κy = 0.35, θy = 0.12 and
σy = 0.12.

• ϕ is such that we have G(t) = EQ[St].

Therefore, we will have using the affine property of y :

Bλ(s, t) = EQ[e−
∫ t
s yudu|Fs]e

−
∫ t
s ϕ(u)du

= Ay(s, t)e−Dy(s,t)yse−
∫ t
s ϕ(u)du. (4.21)

Therefore the shifted process λ is also affine and by noting Φ(s, t) = e−
∫ t
s ϕ(u)du, we have :

• Aλ(s, t) = Ay(s, t)eD
y(s,t)ϕ(s)−Φ(s,t).

• Dλ(s, t) = Dy(s, t).

As λ is an affine process, we can therefore use the deterministic drift adjustment we derived in
the previous paragraph. When being defined by (4.20), λ is said to be a CIR ++ process.

4.2.3 Some numerical results

In the following, we will illustrate the calculation of the EPE profile under both the 2D Monte-
Carlo diffusion setting with M = 10000 samples and with the drift adjustment method. For
this, we will focus on a CIR++ stochastic intensity model and will considerer different gaussian
exposures that can actually reproduce the EPE profile of different financial derivatives.

53



4.2 A new way to tackle the WWR for CVA : a measure change

A swap profile : Let’s consider the following dynamic for the portfolio process V under Q
with µs = γ(T − s)− Vs

T−s
and σs = ν :

dVs =

(
γ(T − s)− Vs

T − s

)
ds+ νdW V

s .

Under this dynamics, it can be shown :

EPEWWR(s) = σ(s)ϕ(
µ(s)

σ(s)
) + µ(s)Φ

µ(s)

σ(s)
. (4.22)

with :

• ϕ the density of a N (0, 1) and Φ her CDF.

• θ(u, s) the deterministic proxy obtained by replacing λs by h(s).

• µ(s) = γs(T − s) + (s− T )
∫ s

0
θ(u,s)
u−T

du.

• σ(s) = ν
√
s(1− s

T
).

Figure 4.4: Comparison of swap exposure profile between 2D Monte-Carlo and the Drift Ad-
justment methods with the parameters : (T = 5Y , y0 = h = 0.15, γ = 0.001, ν = 0.08)

Figure 4.5: Comparison of swap exposure profile between 2D Monte-Carlo and the Drift Ad-
justment methods with the parameters : (T = 15Y , y0 = h = 0.30, γ = 0.001, ν = 0.08)
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4.2 A new way to tackle the WWR for CVA : a measure change

A forward profile : Let’s consider now the following dynamic for the portfolio process V
under Q with µs = 0 and σs = ν :

dVs = νdW V
s .

Under this dynamics, it can be shown that :

EPEWWR(s) = ν
√
sϕ(

Θ(s)

ν
√
t
) + Θ(s)Φ(

Θ(s)

ν
√
s
). (4.23)

with :

• ϕ the density of a N (0, 1) and Φ her CDF.

• Θ(s) =
∫ s

0
θ(u, s)du.

Figure 4.6: Comparison of forward exposure profile between the 2D Monte-Carlo and the Drift
Adjustment with the parameters : (T = 5Y , y0 = h = 0.15 and ν = 0.08 )

Figure 4.7: Comparison of forward exposure profile between 2D Monte-Carlo and the Drift
Adjustment with the parameters : (T = 10Y , y0 = h = 0.15 and ν = 0.08 )
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4.2 A new way to tackle the WWR for CVA : a measure change

A geometric brownian motion profile : Let’s consider finally the following dynamic for
the portfolio process V under Q with µs = µ(s)Vs and σs = σ(s)Vs :

dVs = Vs(µ(s)ds+ σ(s)dW V
s ).

Under this dynamics, it can be shown that :

EPEWWR(s) = V0e
∫ s
0 µ(u)due

∫ s
0 θ(u,s)du. (4.24)

Figure 4.8: Comparison of GBM exposure profile between the 2D Monte-Carlo and the Drift
Adjustment methods with the parameters : (T = 5Y , y0 = h = 0.15, V0 = 0.02 , r = 0.03 and
σV = 0.20)

Figure 4.9: comparison of GBM exposure profile between the 2D Monte-Carlo and the Drift
Adjustment methods with the parameters : (T = 15Y , y0 = h = 0.15, V0 = 0.02, r = 0.03 and
σV = 0.20)

Some remarks on the results :

• As we can see from the plots above, the approximation with the drift adjustment seems
to perform well when we are comparing it with the actual 2D Monte-Carlo. Note that
however, this approximation is sensitive to model parameters as it has been shown in [11]
when the Feller condition is violated.

• Using the drift adjustment technique allows to reduce the computational cost as in theses
cases, the EPE profile under Wrong Way Risk could be computed analytically.
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4.3 The Wrong Way Risk for FVA

4.3 The Wrong Way Risk for FVA
In this section, we will refer to the work introduced in [5] by Zwaard, Grzelak and Oosterlee.
We will denote by EQ

t [.] = EQ[.|Ft].

4.3.1 FVA decomposition under WWR

We will give the decomposition of the FVA under WWR

FV A(t) = EQ
t [

∫ T

t

e−
∫ u
t λC

s +rsds(sBu (Vu)
+ − sLu(Vu)−)du] =

∫ T

t

EPEFV A(t, u)du.

EPEFV A(t, u) = EQ
t [e

−
∫ u
t λC

s +rsds(sBu (Vu)
+ − sLu(Vu)−)].

We will make the following assumptions for the computation of FV A.

• We will suppose that sL = 0 so FBA = 0 and FV A reduces to FCA so we just take in
consideration the cost of borrow and therefore the positive exposure (Vt)

+ profile.

• We will assume a deterministic funding spread sB which can be either be constant or can
be time dependant.

• We assume independance between defaults of A and C.

Proposition 4.3. FVA Exposure Decomposition
Under the Assumptions we defined above, the FVA can be derived as follows :

EPEFV A(t, s) = EPENoWWR
FV A (t, s) + EPEWWR

FV A (t, s).

EPENoWWR
FV A (t, s) = sB(t, s)EQ

t [e
−

∫ s
t λA(u)du]EQ

t [e
−

∫ s
t λC(u)du]EQ

t [e
−

∫ s
t r(u)du(Vs)

+].

EPEWWR
FV A (t, s) = sB(t, s)EQ

t [(e
−

∫ s
t rudu(Vs)

+ − EQ[e−
∫ s
t rudu(Vs)

+)]e−
∫ s
t λA(u)+λC(u)du].

Proof. The idea is to decompose EPEFV A(t, s) in the generic form :

EPEFV A(t, s) = EQ
t [f(t, s, λA, λC)h(t, s, r, V )].

with :

• f(t, s, λA, λC) = e−
∫ s
t λA(s)+λC(s)dssB(s).

• h(t, s, r, V ) = e−
∫ s
t rudu(Vs)

+.

Therefore, EPEFV A(t, s) can be rewritten denoting f = f(t, s, λA, λC) and h = h(t, s, r, V ) for
ease of notation as follows :

EPEFV A(t, s) = EQ
t [f ]E

Q
t [h] + EQ

t [(h− EQ
t [h])f ]

Or, under the assumption of independance between A and C, we recover the expressions for
EPENoWWR

FV A and EPEWWR
FV A which ends the proof.

As we see, we can therefore define the FVA as follows :

FV ANoWWR(t) =

∫ T

t

EPENoWWR
FV A (t, u)du

FV AWWR(t) =

∫ T

t

EPEWWR
FV A (t, u)du

FV A(t) = FV ANoWWR(t) + FV AWWR(t)

(4.25)
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4.3 The Wrong Way Risk for FVA

4.3.2 Some numerical results

We will illustrate the impact of WWR for the FV A for the case of an interest rate swap under
the Hull & White model.

As the aim of the FV A is to capture the funding ability of an institution in the market, we
will focus on a deterministic spread capturing the institution credit risk. We will also suppose
that there is no default for the counterparty C. According to [5], we define the funding spread
as follows :

sB(t) = (1−RA)EQ[λAt ] (4.26)

We aim to evaluate the impact of FV AWWR by omitting the value in comparison with FV A.
We give in the table below the parameters used in the numerical results :

Table 4.2: Parameters used in the numerical experiments for the FV A pricing under WWR

Parameters λA0 κA σA θA r0 RA κr σr
Value 0.12 0.35 0.12 0.12 0.01 0.4 0.5 0.03

FVA for an interest rate swap in the Hull & White model

We will considerer the following model :

drt = κr(θ(t)− rt)dt+ σrdW
r
t ,

dλAt = κA(θA − λAt )dt+ σA

√
λAt dW

A
t ,

d < WA,W r >t= ρr,Adt.

For the computation of sb, we need to compute EQ[λA(t)] for a CIR process which is given by
the following :

EQ[λAt ] = λ0e
−κAt + θA(1− e−κAt).

We give below the plots we obtained

Figure 4.10: EPEFV A profile for an interest rate swap (WWR (left) and no WWR (right))
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4.3 The Wrong Way Risk for FVA

Figure 4.11: Evolution of FV A as a function of ρ and ratio of FV A
FV ANoWWR to see the relative

impact of WWR in FV A computation

Global remarks on the results :

• As we can see from the plots above, the impact of the WWR on the FV A can be
relatively significant in the case of really highly positive correlation leading to +10% of
misevaluation of the FV A. Therefore, as for the CV A computation, the WWR is an
important factor that needs to be taken account by financial institutions in their FV A
calculation.

• The results we obtained are of course highly dependant of the choice of parameters we
took in the model. Therefore, the calibration of the parameters in the default intensity
process λA are really important as they are the key starting points of the potential impact
of the WWR.

Global remarks on the chapter :

• As we demonstrate throughout this chapter, the Wrong Way Risk is a crucial parameter
in the quantification of the potential dependance between exposure and default. We saw
through multiple numerical experiments the impact it can have on the EE profile and so
on CV A0 and FV A0 computation.

• Throughout this chapter, we adopt some choices for our modelling purposes by defining
a default intensity process λ and by considering the WWR impact by correlating the risk
factors of the exposure and default intensity. We mainly refer to the CIR process which
is a very common choice in the litterature as it provides a strictly positive process under
the Feller condition with analytic formulas. Other methodologies to model the WWR
could have been used. For example, copulas are another important tool in the modelling
of the dependance between exposure and the default time of the counterparty. This tool
consists of making an assumption on the joint distribution of the risk factors without
considerating the marginal distributions.
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Chapter 5

Presentation of ML and DL methods for
XVA computations

In this chapter, we will present some numerical methods based on supervised learning algo-
rithms which will help us to overcome the main difficulties associated with the classic Monte-
Carlo framework. Assuming that the price of a derivative or a XV A at time t is given by a
function π(t,Xt) where t ∈ [0, T ] and Xt ∈ D where Xt denotes the underlying risk factor,
we know that when we use a Monte-Carlo approach, we are able to derive the value π(t,Xt)
at a currrent market state Xt = x ∈ D whereas with suitable machine or deep learning al-
gorithms, it can help us to retrieve the function π(t, .) on all the domain D which can be
way more convenient as once the algorithm is trained, it doesn’t lead to further computations.
Moreover, Monte-Carlo methods suffer from the so called curse of dimensionality as it becomes
almost unfeasible to compute prices when the dimension of the underlying d is greater than 5.
Deep Learning algorithms 1 can help us to overcome this issue and make high computational
challenges feasible.

We will introduce 3 supervised machine or deep learning based methods :

• Conditional Expectation Learning introduced in [13] by Huge and Savine in 2020.

• Gaussian Processes Regression introduced in [14] by Rasmussen and Williams in 2006.

• Deep BSDE Solver introduced in [15] by Weinen, Han and Jentzen in 2017.

Assume, we have N i.i.d samples (Xi, Yi)i∈[[1;N ]] defined on a probability space (Ω,F ,P) and
we want to find f ∗ such as f ∗(X) ≈ Y . For this, we need to minimize a loss / criterion l on
a space of functions C(X, Y ) which means that we have to solve the following minimization
problem :

minf∈C(X,Y )EP[l(f(X), Y )]. (5.1)

The algorithms above will specify the form of C(X, Y ) and the criterion l form will depends
of the problem we are tackling with. As we don’t know the true law of (X, Y ), the minimisa-
tion problem 5.1 is solved using the data samples (which are assumed to be i.i.d) 2 from the
distribution under P as the law of large numbers holds. Therefore, the problem becomes :

minf∈C(X,Y )
1

N

N∑
i=1

l(f(Xi), Yi). (5.2)

1An introduction to neural networks is presented in Annex C.
2i.i.d refers to independant and identically distributed.

60



5.1 Deep Conditional Expectation Solver

5.1 Deep Conditional Expectation Solver
We will first introduce a deep learning based method to learn conditional expectation. As in
finance and insurance, the pricing of derivatives relies to the computation of such quantities, it
can therefore be interesting to design an algorithm which can perform well for theses type of
computations.

5.1.1 Theoretical framework

In this section, we will introduce a numerical method based on a representation of the con-
ditional expectation we already used when we introduced the Longstaff-Schwartz Algorithm.
From proposition A.4 in Annexes , we know that for 2 random variables Y and X such that
E[Y |X] is in L2(X), we have:

argminf∈L2(X)E[(Y − f(X))2].

As the space L2(X) leads to an infinite dimension problem, we will replace this space by the
space of functions generated by neural networks parametrized by a vector θ of finite dimension
denoted by f θ. The problem can therefore be rewritten by

argminθE[(Y − f θ(X))2].

From the definition of the problem, we see that the appropriate loss to consider is the MSE
loss and then we can train the neural network by sampling ((Xi, Yi))i∈[[1;N ]]. The associated
algorithm is described in 5.1.1.
Benefits of Conditional Expectation Solver :

• Assuming we want to price derivatives or XV As, we don’t need to compute prices as
labels but only what is inside the conditional expectation which can help to reduce the
computational cost of the method in case we have to compute prices using a classic
numerical method such as Monte-Carlo or PDEs.

• Instead of a classical method where we price at a single current state (Xt = x), the neural
network can help to learn the entire price function on a domain of interest D.

Algorithm 5.1 Deep Conditional Expectation Solver
Input Parameters : B batch size
Fix Architecture of NN which defines the number of parameters in the vector θ

Deep Conditional Expectation Solver (B) :

Assume N iid samples (X, Y )
Define the neural network f θ

Minimize over θ by considering a mini-batch gradient descent with batch B

1

N

N∑
i=1

(Yi − f θ(Xi))
2

end
Output Parameters : θ∗ the optimized parameter of the NN
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5.1 Deep Conditional Expectation Solver

5.1.2 An application of the method in a Markovian model

In this subsection, we will illustrate the efficiency of the algorithm 5.1.1 for various derivatives
in potentially high dimensions for Markovian models.

We will assume the B−S for an underlying S and we will consider the case of an european
option with final payoff given by g(ST ) at a maturity T . The price at date t is given under the
risk neutral probability measure Q by :

Ct = EQ[e−r(T−t)g(ST )|Ft].

The important trick here is under the markovian property of the process S = (St)t∈[0,T ], the
process price C = (Ct)t>0 can be written as Ct = F (t, St) for an unknown measurable function
F . Therefore, we expect the neural network denoted by F θ with θ representing the NN to
approximate well the unknown form F .According to the algorithm 5.1.1 , we can look for such
a candidate by putting our training data as follows :3

• X as St.

• Y as e−r(T−t)g(ST ).

In order to generate our data, we generated N = 10000 samples of data (X, Y )i∈[[1;N ]] assuming
that X ∼ U(20, 200) 4. Therefore, our goal is to be able to learn the function price F on the
domain D = [20, 200]. As we assumed a B − S model, for each sample Si, we have :

Si
T = Si

te
(r−σ2

2
)(T−t)+σ

√
T−tZi

. (5.3)

with r the interest risk free rate, σ the volatility and Zi ∼ N (0, 1).

Table 5.1: Parameters used in the numerical experiments for the B − S pricing

Parameters r σ t T K
Value 0.025 0.3 0 1.5 102.5

Table 5.2: Neural network architecture for derivatives pricing using Deep Conditional Expecta-
tion Solver

Number of Inputs 1
Number of Outputs 1

Number of Hidden Layers 3
Number of Neurons per Layer 15

Activation Function Sigmoid
Weight Initialization Xavier/Goriot

Gradient Descent Algorithm Adam Optimizer (learning rate = 0.001)

3We will standardize our data because it shows better results by considering the standard scaling of our
data such as X̃i = Xi−µX

σX
and Ỹ i = Y i−µY

σY
where µ and σ respectively stand for the mean and the standard

deviation on the data.
4U([a, b]) refers to the uniform distribution on [a, b] with density function given by fX(x) = 1

b−a1x∈[a,b].
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5.1 Deep Conditional Expectation Solver

Some remarks on the parametrization :

• The neural network architecture is subjective and any other decent architecture could
lead to similar or better results.

• As an improvement to the algorithm we could train a neural network with more potential
inputs like r, σ, T and K. This is of course possible but as we just aim to show the
accuracy of the method here, we do not focus on this aspect.

• Theoretically, we can achieve the same thing for any more complex model as long as we
have the Markov property and know which are the risk factors such that we can write
Ct = F (t,Xt) with Xt the relative risk factor which can potentially be multidimensionnal.
For example, in the Heston model which is known to be markovian we will have Xt =
(St, vt) ∈ (R+

∗ )
2 where vt stands for the variance of the underlying St.

Some numerical results :

We will illustrate the results for several european options starting from options for which closed
formulas are known to check the accuracy of the NN approximation. We will also test the
algorithm in a high multidimensionnal setting to see the scalability of the approach. For this,
we will plot the true price when available, the network output and also the discounted payoffs
which are the output labels in our setting. 5

A forward contract :

We consider the case of a forward contract where they payoff is given by :

g(ST ) = ST −K.

Figure 5.1: Learning the price of a forward contract in the B − S model

5In the Annex E.5, we show how the learning process works out which shows the evolution of the MSE on
the training set and the test/validation set as the MSE is the appropriate loss in our context
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5.1 Deep Conditional Expectation Solver

An european put option :

We consider the case of a put option where the payoff is given by :

g(ST ) = (K − ST )
+

Figure 5.2: Learning the price of an european put in the B − S model

A digital option :

We consider the case of a digital option with a non-continuous payoff given by :

g(ST ) = 1ST>K

Figure 5.3: Learning the price of a digital option in the B − S model
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5.1 Deep Conditional Expectation Solver

A multidimensional case :

In the following, we will illustrate the algorithm in a multidimensional case in the B − S
model. We will suppose 2 options on d = 6 assets with the following correlation matrix :

Table 5.3: Correlation matrix of the underlying factors in the B − S model

1 ρ ρ ρ ρ ρ
ρ 1 ρ ρ ρ ρ
ρ ρ 1 ρ ρ ρ
ρ ρ ρ 1 ρ ρ
ρ ρ ρ ρ 1 ρ
ρ ρ ρ ρ ρ 1

We assume for the following numerical results that ∀i ∈ [[1; 6]], σi = 0.3 and ρ = 0.3

A max call option :

We consider the case of a Max Call Option with the following payoff given by :

g(S1
T , . . . , S

6
T ) = (max

i∈[[1;6]]
Si
T −K)+ (5.4)

Figure 5.4: Learning the price of a max call option in the B − S model with d = 6 assets

65



5.1 Deep Conditional Expectation Solver

A min put option :

We consider the case of a min put option with the following payoff given by :

g(S1
T , . . . , S

6
T ) = (K − min

i∈[[1;6]]
Si
T )

+ (5.5)

Figure 5.5: Learning the price of a min put option in the B − S model with d = 6 assets

Some remarks on the results :

• As we can observe on each plots, there is a true convergence of the value of the NN
towards a function whereas the outputs Y are still random. It is particulary significant in
the case of the binary option, where the ouputs labels are either 0 or 1 up to a discount
factor. As the payoff option is not continuous, this is interesting to see that the Deep
Conditional Learning algorithm still works in this case.

• For the multidimensional case, we don’t provide the analytic formula but we recover the
fact that the max call option is higher than the version with d = 1 asset. We have similar
results for the min put option where we expect the price of the option to be higher.

Global remarks on the Deep Conditional Learning Algorithm

• This method is interesting in the sense that we don’t have to compute prices for the
output labels which reduce the overall computational cost when theses prices needs to be
computed using an appropriate numerical method like Monte-Carlo or by solving a PDE.

• This method seems to be well suited for XV As as we need to compute conditional ex-
pectations. However, in the CV A or FV A cases, our labels Y will need to be directly
options price at at any time t during the lifetime of the financial product so if we want
to use this technique to reduce the nested Monte-Carlo challenge of XV As , we need
to be able to compute theses quantities with an efficient manner. By combining various
numerical methods, it may be possible to build an efficient algorithm which benefits from
the advantage of each method.

• However, in the case of the MVA computation, this method is particularly well suited
with the ISDA approach as we will illustrate it in the next chapter.

66



5.2 Gaussian Processes Regression

5.2 Gaussian Processes Regression
We now introduce a new technique widely used in finance recently for derivatives pricing and
calibration named Gaussian Processes Regression (GPR). This technique allows for really fast
computation of price surfaces. As we mention in the previous technique, we need to be able
for the computations of the CV A and FV A to calculate the value of the product at any time
t during the lifetime of the transaction and we will analyze GPR performance to do this.

5.2.1 Theoretical framework

As we said in the introduction of this section, a machine learning implies the definition of a
space function C(X, Y ) and we will specify the form of C(X, Y ) in the case of GPR. Let’s
assume that our input variable is ∈ Rd with d ∈ N∗ and our output variable is in R

Definition 5.2.1. We say that a function f : Rd → R is distributed by a GPR(µ,KX,X) if
∀n ∈ N∗ ∀ x1, x2, . . . , xn ∈ Rd, we have that :

[f(x1), f(x2), . . . , f(xn)] ∼ N (µX , KX,X).

with µ ∈ Rn and KX,X ∈ Mn(R) symetric semi-definite positive matrix with general term
defined by :

µi = µ(xi).

KX,X(i, j) = K(xi, xj).

The function K is called kernel and has the following property which permits to KX,X to be a
symetric semi-definite positive matrix.

n∑
i=1

n∑
j=1

k(xi)k(xj)aiaj ≥ 0 for any ak ∈ R.

There exists some kernels which can be used according to the kind of problem you are
dealing with.

• The Squared Exponential Radial basis Kernel which depends only of the norm ∥x − x′∥
defined by K(x, x′) = σ2e−

1
2l2

∥x−x′∥2 where l is the length-scale parameter and σ the
amplitude which characterizes the maximum of the correlation. The intuition with this
kernel is as close as inputs are in term of the norm 2 distance, as more they are correlated
and if they are "far", then they are uncorrelated.

• Periodic Kernels defined by K(x, x′) = σ2e
− 1

2l2

∑d
j=1 sin

2( π
λj

(xj−x′
j)) where each dimension of

the input space has a period λj. These type of kernels are useful when dealing with time
series with clear periodic effects.

In practice, an additive noise is added to the data to add one more hyperparamter to fit the
model as it is done in the linear regression model. Therefore, in a GPR, we assume that the
data is distributed as follows :

yi = f(xi) + ϵi, ∀i ∈ [[1;N ]]. (5.6)

where ϵi ∼ N (0, σ2
ϵ ) and σ2

ϵ > 0 supposed to be i.i.d and f is a GPR(0, KX,X)
6. Therefore,

assuming the training sample x = (x1, x2, . . . , xn) and x∗ the new input that we want to predict.
6In practice, f is assumed to be a GPR with mean µ = 0 as it can be recalibrated later.
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Proposition 5.1. Under the model specification given by (5.6), we have :[
y
y∗

]
∼ N (0,

[
K(x, x) + σ2

ϵ In K(x∗, x)T

K(x∗, x)T K∗ + σ2
ϵ

]
) (5.7)

Therefore, the law of y∗|x, y, x∗ is given by a N (E[y∗|x, y, x∗],V[y∗|x, y, x∗]) with :

E[y∗|x, y, x∗] = µX∗ +KX∗,X [KX,X + σ2
ϵ In]

−1y
V[y∗|x, y, x∗] = KX∗,X∗ −KX∗,X [KX,X + σ2

ϵ In]
−1KX,X∗

Proof. The model specification comes immediatly from the definition in (5.6). The proof is
based on the following lemma :

Lemma 5.1. Assume (X1, X2) ∈ Rn × Rm a gaussian vector such as[
X1

X2

]
∼ N (

[
m1

m2

]
,

[
Σ1 Σ⊤

21

Σ21 Σ2

]
) (5.8)

Therefore , X2|X1 = x1 ∼ N (m2|1,Σ2|1) where

• m2|1 = E[X2|X1 = x1] = m2 + Σ21Σ
−1
1 (x1 −m1)

• Σ2|1 = V[X2|X1 = x1] = Σ2 − Σ21Σ
−1
1 ΣT

21

Proof. As (X1, X2) ∈ Rn×Rm is a gaussian vector, we know that for λ ∈Mm×n(R) (X2−λX1)
is independant from X1 if and only if Cov(X2−λX1, X1) = 0 which simplifies to Σ21−λΣ1 = 0
meaning that by choosing λ = Σ21Σ

−1
1 ∈Mm×n(R) , we have that X2−λX1 independant from

X1. Therefore, we have that :

E[X2|X1 = x1] = E[X2 − λX1 + λX1|X1 = x1] = E[X2 − λX1] + λx1 = m2 + λ(x1 −m1)

V[X2|X1 = x1] = V[X2 − λX1 + λX1|X1 = x1] = V [X2 − λX1] = Σ2 − 2λΣ⊤
21 + λΣ1λ

⊤

= Σ2 − 2λΣ⊤
21 + λΣ1Σ

−1
1 Σ⊤

21 = Σ2 − Σ21Σ
−1
1 Σ⊤

21 (5.9)

which ends the proof by setting the appropriate terms in the case of the GPR.

Therefore, using a GPR prior modelling on the data allows easy computations of the pos-
terior distribution using properties of gaussian vectors. Moreover and in comparison with the
deep learning and neural network approach, we can quantify the uncertainty in the GPR in-
terpolation which is something particularly important.

Hyperparameter tuning The hyperparameter tuning is done by maximizing the likeli-
hood of the data. It can be show from [16] that the logarithm of the marginal distribution
log(p(Y |X, θ) parametrized by the vector parameter θ is given by :

log(p(Y |X, θ)) = −[Y ⊤(KX,X + σ2I)−1Y + log(det(KX,X + σ2I)]− N

2
log(2π) (5.10)

where I is the identity matrix ofMN(R).
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5.2 Gaussian Processes Regression

Therefore, we aim to find the parameter θ (which depends of the type of kernel K and the
number of hyperparameters used in the definition of K) which solves the following problem :

argmaxθp(Y |X, θ).

As there is not an analytic solution for θ, the maximization is performed using a gradient
descent algorithm as the gradient of the log likelihood with respect to θ is given by :

∂p(Y |X, θ)
∂θ

= Tr(αα⊤ − (KX,X + σ2IN)
−1)

∂(KX,X + σ2IN)

∂θ

−1

.

where α = (KX,X + σ2IN)
−1Y .

Benefits and disadvantages of GPR :

• The GPR does scale poorly with the number of data N as it involves the computation of
the Cholesky decomposition for the matrix K for the training set. For the test set, it only
involves a matrix multiplication which is performed in O(N2). However, it does require
quite few data for the GPR to fit the actual model that’s why they bring an important
computational efficiency.

• GPR are used in practice because they benefit from convergence properties like neural
networks. They are also linked to neural networks (with some hypothesis on the biais
and weights) because considering a NN having only one hidden layer with the number
of neurons M which tends to +∞, then the NN tends to a GPR. The form of the GPR
depends on the choice of the activation function in the neural network architecture.

• Once trained and similarly to neural networks, we can use the model to derive the map
function and not only the value at a current state (Xt = x) unlike Monte-Carlo.

• In the case of finance and insurance, the input vector X will correspond to our risk factors
depending of the model and Y will be the price of the financial instruments unlike the
Deep Conditional Learning Algorithm where the labels were the payoffs. Therefore, using
the GPR, we will need to compute noisy labels Y in case if they are estimated using
appropriate numerical methods like Monte-Carlo or PDE.
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5.2 Gaussian Processes Regression

5.2.2 Some applications of GPR in finance and insurance

We will show numerical applications of GPR in the case of pricing some derivative contracts
either finance or insurance one to illustrate the major benefits and disadvantages of the method.

A B-S setting :

Table 5.4: Parameters used in the numerical experiments in the B − S setting

Parameters r σ T K
Value 0.03 0.3 1 100

In this case, we fitted the model with 40 grid points on a set Ω ⊂ [0, 1] which will represent
the normalized value of the underlying. We used the Radial Basis Kernel and we test the
model on 40 test points. The training process is almost immediate and the fitting is particularly
accurate.

Pricing of a Call Option and the Delta under B-S :

Figure 5.6: Pricing of a call option in B − S model and associated error using GPR

Figure 5.7: Pricing of Delta on a call option in B − S Model and associated error using GPR

Some remarks on the result :

• The GPR approximation is really accurate as we can observe on both plots.

• The ∆ is calculated through the derivative of the Kernel as it allows an analytic formula
showing really good results.

• The model has learned the price function by showing the true labels. In the next example,
we will show the performance when the output labels are noisy.
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5.2 Gaussian Processes Regression

Pricing of a binary option and his delta using M-C samples :

Figure 5.8: Pricing of a binary call option and associated error using GPR with M = 106

M − C simulations

Figure 5.9: Pricing of the delta of a binary call option in B − S model and associated error
using GPR with M = 106 M − C simulations

Some remarks on the results :

• The GPR approximation is not as much accurate as it was for the european call with true
labels. In our case, the learning of the binary price is still decent but for the derivative
Delta , the performance is way worst.

• The impact of the labels is therefore significant in the sense the GPR will have more
difficulties to learn the true pricing surface and the derivatives can have significant dif-
ferences. This feature is particularly important and it highlights the fact that the data
which is provided to the GPR needs to be the most accurate as possible.
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5.2 Gaussian Processes Regression

Pricing of a GMMB Contract :

We now present the case of a GMMB Contract which is defined by the following payoff at
maturity T for someone who is aged x at t=0. 7

1τ>T max(ST , K).

where :

• τ denotes the mortality date of the insured starting from 0 at age x.

• ST is the value of the underlying stock at time T with S0 ∈ R∗
+

• K is a minimum guarantee for the insured.

We assume the following dynamics for the underlying stock and the mortality rate λ for someone
aged of x at t = 0:

dSt = St(rdt+ σdW 1
t ),

dλt = cλtdt+ ξ
√
λtdW

2
t , (5.11)

d < W 1,W 2 >t= ρdt.

As we saw in a previous chapter, we define τ = inf{t ≥ 0 :
∫ t

0
λsds ≥ ν} such that Q(τ > t) =

EQ[e−
∫ t
0 λsds].

Figure 5.10: Density and Survival Function of τ with the following set of parameters : (c =
0.0750 , ξ = 0.000597 , λ0 = 0.0087)

The fair value of the GMMB contract is defined as t = 0 by :

PGMMB
0 = EQ[e−rT1τ>T max(ST , K)] (5.12)

As we know that the model (5.11) is markovian, we know that PGMMB
0 is a function of (S0, λ0)

so it defines our input vector x . We therefored used 40×40 grid points on a set Ω ⊂ [0, 1]×[0, 1].
We will now provide some numerical results by showing how the number of MC simulations for
the noisy price labels can influence the accuracy of the GPR in reproducing the price surface.
We give below the parameters we used in the numerical experiments for the GMMB contract
pricing.

7The parameters are taken from the article Actuarial-consistency and two-step actuarial valuations of Karim
Barigou.
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5.2 Gaussian Processes Regression

Table 5.5: Parameters used in the numerical experiments for the GMMB contract pricing

Parameters c ξ r σ ρ K
Value 0.0750 0.000597 0.02 0.2 -0.7 1

Figure 5.11: 1000 MC simulations to learn the price surface of a GMMB contract (T = 10Y )

Figure 5.12: 10000 MC simulations to learn the price surface of a GMMB contract (T = 10Y )

Figure 5.13: 100000 MC simulations to learn the price surface of a GMMB contract (T = 10Y )

• As we can see from the price evolution of the GMMB contract, it’s an increasing function
of both λ0 and S0 as we could expect from the definition of the payoff.

• However, the efficiency of the method is highy dependant of the quality of the data we
are given in inputs. When the prices computed by M−C are less noisy, then the learning
process is more accurate as the error becomes less important.
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5.2 Gaussian Processes Regression

Figure 5.14: 1000 MC simulations to learn the price surface of a GMMB contract (T = 20Y )

Figure 5.15: 10000 MC simulations to learn the price surface of a GMMB contract (T = 20Y )

Figure 5.16: 100000 MC simulations to learn the price surface of a GMMB contract (T = 20Y )

Global remarks on the GPR methodology

• As we show, the GPR methodology can be a great tool to deal with really fast compu-
tations of full surfaces. However, it needs to learn from accurate labels as the pricing of
the GMMB contract shows.

• In the next chapter, we will illustrate how we can use the GPR algorithm to compute
accurate exposure profile by learning as much GPR as discretization times for the CV A0

computation.
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5.3 Deep BSDE Solver

5.3 Deep BSDE Solver
In this subsection , we will introduce a recent methodology introduced in [15] by Weinan, Han
and Jentzen to solve parabolic partial differential equations. As in the financial world, pricing
problems can be related to the solution of PDE, this method has gained a lot of interest since
it can handle the so called curse of dimensionality from which the major of classic numerical
algorithms suffer. The Deep BSDE Algorithm is an algorithm that leverages deep learning
algorithms and Backward Stochastic Differential Equations (BSDEs).

5.3.1 Theoretical framework

We assume (Ω,F ,Q) a probability space and (Ft)t∈[0,T ] a filtration adapted to a d-dimensional
Brownian motion W = (Wt)t∈[0,T ] with T > 0 and we introduce the following spaces :

• L2(Rd) is the space of FT measurable variables in Rd such that EQ[∥X∥2] <∞.

• S2(0, T )d the space of progressively measurable process Y = (Yt)t∈[0,T ] valued in Rd such
that EQ[supt∈[0,T ]∥Yt∥2] <∞ .

• H2
T (Rd) is the space of predictable processes Y = (Yt)t∈[0,T ] valued in Rd such that ∥Y ∥2 =

EQ(
∫ T

0
|Yt|2dt) <∞.

The BSDE method : A generalization of Feynmann-Kac

BSDEs are an important tool and are particularly well suited to financial problems as they
are stochastic differential equations with a terminal condition, very used in finance and in
stochastic control theory.
Let’s consider the following BSDE equation given by :

dYt = −f(t, ., Yt, Zt)dt+ ZT
t dW

Q
t , YT = ξ. (5.13)

where :

• ξ ∈ L2(Rd).

• Yt ∈ Rd and Zt ∈ Rn×d.

• f : [0, T ] × Ω × Rd × Rn×d 7→ Rd is such that the function f(t, ., y, z) is a progressively
measurable function called driver ∀(y, z) ∈ Rd × Rn×d.

However, there is no guarantee that there exists 2 process Y and Z which solve (5.13) as the
solution may not be adapted to the filtration. To handle this issue, the following theorem has
been derived to ensure existence and unicity to the BSDE equation.

Proposition 5.2. If f and ξ satisfy the following properties :

• ξ ∈ L2(Rd).

• f(., ., 0, 0) ∈ H2
T (Rd).

• f is uniformly Lipschitz in y and z meaning that dt ⊗ dQ almost surely , we have for 2
constants Ly and Lz and ∀(y1, y2, z1, z2)

|f(t, w, y1, z1)− f(t, w,y2, z2)| ≤ Ly(|y1 − y2|) + Lz(|z1 − z2|). (5.14)
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5.3 Deep BSDE Solver

Then the BSDE has an unique adapted solution (Y, Z) ∈ S2(0, T )d ×H2
T (Rn×d).

Proof. The proof can be found in the book [17] from Huyên Pham with a proof based on a
fixed point argument.

In finance, ξ will correspond to the terminal value and will be of the form ξ = g(XT ) for a
process X = (Xt)t∈[0,T ] and under some assumptions, Y will correspond to the associated price
ξ that’s why it’s called a generalisation of the Feymann-Kac formula. We now assume that Y
is valued in R.

The FBSDE representation

Let’s considerer the following Forward Backard Stochastic Differential Equation (FBSDE ) :

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)
TdWQ

s .

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZT
s dW

Q
s .

(5.15)

where we assume that b : [0, T ]×Rd → Rd , σ : [0, T ]×Rd → Rd×d , f : [0, T ]×R×R×Rd → R
and g : Rd → R follow the classical assumptions ensuring existence and unicity.
We denote by (Xx

t )t∈[0,T ] and (Y y
t , Zt)t∈[0,T ] the unique adapted solution to (5.15) where Y y

t

means that Y starts from Y0 = y.
Let’s now consider the semilinear parabolic PDE of which u : [0, T ]× Rd 7→ R is solution :

(∂t + L)u(t, x) + f(t, x, u(t, x), σT (t, x)Dxu(t, x)) = 0, ∀(t, x) ∈ [0, T [×Rd.

u(T, x) = g(x), ∀x ∈ Rd.
(5.16)

where the operator L is the one of the diffusion process X that is to say :

L(u)(t, x) = 1

2
Tr(σσT (t, x)D2

xu(t, x)) + ⟨b(t, x), Dxu(t, x)⟩. (5.17)

This class of PDEs is relatively large and a lot of financial pricing problems can be written as
a semilinear parabolic PDE equation.
Now, let’s formulate the main proposition which will be the key motivation for the design of
the Deep BSDE Solver.

Proposition 5.3. The processes (Yt = u(t,Xt))t∈[0,T ] and (Zt = σT (t,Xt)Dxu(t,Xt))t∈[0,T ] are
solution to 5.15

Proof. Let’s apply the Itô formula to the process u(t,Xt) assumed to be C1,2. Therefore, we
have :

du(t,Xt) = (∂t + L))u(t,Xt)dt+ σTDxu(t,Xt)dW
Q
t

du(t,Xt) = −f(t,Xt, u(t,Xt), σ
TDu(t,Xt))dt+ σTDxu(t,Xt)dW

Q
t

By integrating and using the terminal condition, we have :

u(t,Xt) = g(XT ) +

∫ T

t

f(s,Xs, u(s,Xs), σ
TDxu(s,Xs))ds−

∫ T

t

σTDxu(s,Xs)dW
Q
s (5.18)

Therefore, we recover the form of Yt and by unicity of the solution, it follows that Yt and Zt

are solutions of the BSDE and are adapted to the filtration generated by WQ
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5.3.2 Study of the algorithm

The reformulation of the problem in terms of FBSDE is related to the following stochastic
optimal control problem : 8

min
y,(Zt)t∈[0,T ]

E[|g(XT )− Y y,Z
T |2]. (5.19)

where :

• Xt = x+
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)

TdWs.

• Y y,Z
t = y −

∫ t

0
f(s,Xs, Y

y,Z
s , Zs)ds+

∫ t

0
ZsdWs.

A solution (Y, Z) to the BSDE is a minimisor of 5.19 and that’s the key starting point of
the Deep BSDE Algorithm. Indeed, as we have formulated the problem into a minimisation
problem, we can now make use of machine learning methods. Let’s consider 0 = t0 < t1 <
. . . < tN = T a uniform meshgrid with step size ∆t = T

N
and N ∈ N∗ such that tn = n∆t.

Using the Euler scheme discretization , we can approximate Xt and Y y,z
t as the following such

that we have ∀n ∈ [[0;N − 1]] :

Xtn+1 = Xtn + b(tn, Xtn)∆t+ σ(tn, Xtn)(Wtn+1 −Wtn), X0 = x. (5.20)

Y y,Z
tn+1

= Y y,Z
tn − h(tn, Xtn , Y

y,Z
tn , Ztn)∆t+ ZT

tn(Wtn+1 −Wtn), Y y,Z
0 = y. (5.21)

The idea of the Deep BSDE is to approximate at each time step tn the control process Ztn

in (5.21) by using a FFNN . Indeed, in a markovian setting Ztn is assumed to be in the form
ϕn(Xtn). As we also aim to learn the optimal parameter y from the stochastic control problem,
we will set y approximated by ξ as a trainable parameter of the neural network which will be
optimised during the learning procedure.

Let’s denote by θ a vector associated to a specified architecture of a neural network. For
sake of simplicity, we will assume that each neural network at each time step has the same
structure. Therefore, we can introduce a family of neural networks (ϕθ

n)n∈[[0;N ]] valued from Rd

to Rd such as by defining Zθ
tn = ϕθ

n(Xtn), we can define the following discretisation scheme :

Y ξ,θ
tn+1

= Y ξ,θ
tn − h(tn, Xtn , Y

ξ,θ
tn , Zθ

tn)∆t+ (Zθ
tn)

⊤(Wtn+1 −Wtn), Y ξ,θ
0 = ξ. (5.22)

Therefore, the global minimization problem becomes :

min
ξ,θ

E[(g(XT )− Y ξ,θ
T )2]. (5.23)

By sampling L Monte-Carlo paths (X
(l)
tn , Y

(l)
tn )n∈[[0;N−1]] for l ∈ [[1;L]], we will look to minimize

the approximated expected cost :

min
ξ,θ

1

L

L∑
l=1

(g(X
(l)
T )− Y ξ,θ,(l)

T )2. (5.24)

8Other algorithms have been recently developed exploiting the same idea of the BSDE representation (see
[18]).
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Some remarks on the algorithm :

• The Deep BSDE Solver can be used to solve a lot of financial problems as long as they
are semilinear which is the case of XV As under suitable hypothesis.

• The Deep BSDE solver can overcome the curse of dimensionnality problem that we
mentionned and we will illustrate it in the next chapter where we will learn the exposure
profile of a high dimensionnal european derivative.

In the following, we are giving some informations of the control error of processes Y and Z to
understand better the algorithm.

Proposition 5.4. Error Bound for Y in term of error of Z9

There exists a constant C independant of ξ and θ but dependant of other model parameters
such that we have :

sup
t∈[0,T ]

E[|Yt − Y ξ,θ
t |2] ≤ C(E[(Y0 − ξ)2] +

∫ T

0

E[Zt − Zθ
t |2]dt). (5.25)

Proof. We will study the error between the true solution of the BSDE (Y, Z) with her neural
network approximation (Y ξ,θ, Zθ). Let’s define first the continous form of the process Y ξ,θ

t

Yt = Y0 −
∫ t

0

f(s,Xs, Ys, Zs)ds+

∫ t

0

ZT
s dW

Q
s .

Y ξ,θ
t = ξ −

∫ t

0

f(s,Xs, Y
ξ,θ
s , Zθ

s )ds+

∫ t

0

(Zθ
s )

TdWQ
s .

(5.26)

We now use the following convexity inequality for a1, . . . , aN ∈ R and N ∈ N∗ which comes the
Jensen inequality applied to the squared function.

(
∑N

i=1 ai)
2 ≤ N

∑N
i=1 a

2
i .

Therefore, we can write :

|Yt − Y ξ,θ
t |2 ≤ 3(|Y0 − ξ|2 + |

∫ t

0

f(s,Xs, Ys, Zs)− f(s,Xs, Y
θ
s , Z

θ
s )ds|2 + |

∫ t

0

(Zs − Zθ
s )

TdWs|2).

(5.27)

Before taking the expectation, we will use the following convexity inequality for ϕ convex and
(a, b) ∈ R2 and f continous function.

ϕ(
1

b− a

∫ b

a

f(x)dx) ≤ 1

b− a

∫ b

a

ϕ(f(x))dx. (5.28)

Applying the previous inequality to the central term in 5.27 with ϕ(x) = x2 and using the
Lipschitz property of f in y and z (noting L the associated Lipschitz constant) and the
Burkholder −Davis−Gundy inequality, we have :

E|Yt − Y ξ,θ
t |2 ≤ 3(E|Y0 − ξ|2 + 2tL2

y

∫ t

0

E|Ys − Y ξ,θ
s |2ds+ (2tL2

z + 1)

∫ t

0

E|Zs − Zθ
s |2ds). (5.29)

9The proof of this result is based from [19].
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Using Grownwall lemma 10, we can write :

E|Yt − Y ξ,θ
t |2 ≤ 3(E|Y0 − ξ|2 + (2tL2

z + 1)

∫ t

0

E|Zs − Zθ
s |2ds)e6tL

2
y

From the inequality 5.30, we can by considering a constant C which only depends on L and T
write :

E[|Yt − Y ξ,θ
t |2] ≤ C(E[(Y0 − ξ)2] +

∫ T

0

E[Zs − Zθ
s |2]ds) ∀t ∈ [0, T ] (5.30)

As the equality holds ∀t ∈ [0, T ], it ends the proof.

From proposition 5.4, we see that the error control on Y is done by the approximation of ξ
by the process Y ξ,θ and by the control process Zθ. In the proof, we used the continuous form of
Y ξ,θ
t which is theoretical and we have to consider in the global error term the error associated

to the discretisation.
Other bounds on the algorithm can be found under suitable assumptions on the coefficients

of the FBSDE in [19].

Use cases of the Deep BSDE Solver in derivatives pricing :

Let’s consider a Black-Scholes model defined by the following dynamics of the underlying S :

dSt = St(rdt+ σdWt), S0 ∈ R∗
+. (5.31)

Let’s consider the pricing of an European derivative with payoff g(ST ). It is known that the
price u of the option is given by solution of the following PDE :

∂tu+
1

2
σ2S2∂S2u+ rSs∂Su− ru = 0 ∀(t, x) ∈ [0, T [×R∗

+.

u(T, x) = g(x) ∀x ∈ R∗
+.

In this setting, we have that f(t, x, y, z) = −ry which verifies the classical assumptions and
therefore the Deep BSDE Solver Algorithm can be used in the case of an european derivative
and we will use this representation for the XV A computation also in higher dimensions. The
case of pricing using the Deep BSDE Solver is highly currently studied in the litterature as it
has opened new doors to overcome the limits of the classical numerical methods. 11

10See https://www.ceremade.dauphine.fr/~mischler/Enseignements/M2evol2018/chap0.pdf for an in-
troduction to the lemma.

11A study of barrier options with the Deep BSDE Solver has been done in the article Deep-learning based
numerical BSDE method for barrier options from Yu, Xing and Sudjianto where they rewrite integrate these
type of products in the Deep BSDE framework.
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Chapter 6

Application of ML and DL methods for
XVA computations

6.1 Deep Conditional Expectation Solver for XVA compu-
tations

To illustrate the Deep Conditional Expectation Solver, we will come back to the definition of
CV A0 and FV A0

1 and we need to distinct 2 cases :

• The first case when we suppose that we know how to sample the default time τC .

• The second case when we don’t know how to sample the default time τC .

Using a sampling of τC :

In the case where we are able to sample τC , we know that we can evaluate CV A0 by using the
following representation :

CV A0 = EQ[1τC≤T

(VτC )
+

BτC
|G0].

Not using a sampling of τC :

In the case where we are not able to sample τC , we saw that we could under no WWR formulate
an approximation of the CV A given by equation 2.9 :

CV A0 ≈ −(1−RC)
N−1∑
i=0

EPE(ti)(G(ti+1)−G(ti)).

FV A0 ≈
N−1∑
i=0

Q(τA > ti+1)Q(τC > ti+1)(EQ[
1

Bti+1

(sb(ti+1)(Vi+1)
+ − sL(ti+1)(Vi+1)

−)](ti+1 − ti).

EPE(ti) = EQ[
1

Bti

(Vti)
+|F0].

These 2 forms of the XV A will help us to illustrate the Conditional Expectation Learning
Algorithm 5.1.1 as we have for both representations to calculate conditional expectations.

1We won’t focus on the version of CV A or FV A under Wrong Way Risk in the further computations.
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6.1.1 An application to CVA

Case of sampling τC :

In this case, according to algorithm 5.1.1, we will need to simulate N i.i.d samples of the form
(Xi, Yi)i∈[[1;N ]] where in our case we have :

• Xi is the Markov state of the i− th sample in the considered model.

• Yi = 1τCi <T

(V
τC
i
)+

B
τC
i

.

As we did in the previous experiments, we assumed that S0 ∼ U(20, 200) and τ ∼ E(λC).
For the training process of the neural network, we train it using N = 10000 samples of (X, Y ).
As we can see, it requires to be able to price the derivative on which the XV A is calculated
at any potential time between 0 and T so it doesn’t reduce the computational cost of a nested
Monte-Carlo but it can atleast help to learn the XV A function on the domain of definition of
the markovian state of the process.
We provide again some numerical results in the case of a B − S model for a forward contract
and an european put option as we have closed formulas to evaluate V +

τC
in this context.

We give below the parameters used in the numerical results.

Table 6.1: Parameters used in the numerical experiments for CV A0 pricing using Deep Condi-
tional Expectation Solver

Parameters r σ T K RC λC

Value 0.02 0.2 1 100 0 0.5

Figure 6.1: CV A0 learning in a B − S model by sampling τC for a forward (left) and an
european put (right)

Table 6.2: Metric errors after the learning phase in Deep Conditional Expectation Solver for
CV A0 computation

MSE Forward European Put
Training Set 0.757 0.719

Test Set 0.745 0.720
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Some potential improvments on the methodology :

As we said, the main disadvantage of the method is the fact that we need to compute (Vt)
+ at

any time t ∈ [0, T ]. In this case the algorithm doesn’t help to reduce the computational cost.
However, we can imagine combining an other neural network method to calculate efficiently
the surface price as we know that in our context that Vt = C(t, St).

Case of not sampling τC :

Following the representation of CV A0 under (2.9), we see that knowing the exposure profile
at a timegrid 0 = t0 < . . . < tN = T is sufficient to characterize the CV A. Therefore, we can
consider to compute the following vector EPE defined as follows :

EPE = (EPE(t0), . . . , EPE(tN)).

EPE = (EQ[
1

Bt0

(Vt0)
+|F0], . . . ,EQ[

1

BtN

(VtN )
+|F0]).

EPE = EQ[(
1

Bt0

(Vt0)
+, . . . ,

1

BtN

(VtN )
+)|F0].

Following this definition, we can look to approximate the vector EPE using the Deep Condi-
tional Expectation Solver by assuming that the initial market state F0 is characterized by a
vector X. Thereby, we can write EPE=(Ft0(X), . . . , FtN (X)) = F(X) for unknown determin-
istic functions Ft0 , . . . , FtN .2

A numerical result with a call option :

We suppose a B − S model as it allows computation of closed formulas for a call option. We
assume that the model is calibrated and we use r = 0.03, σ = 0.2 and T = 1 in the computa-
tions.
The inputs of our neural network will be both the current value of the option S0 and the associ-
ated strike K assumed to be sampling using an uniform distribution such that S0 ∼ U(70, 130)
and K ∼ U(70, 130) and we will considered the output vector to be of dimension 100 meaning
that we consider 100 time steps for the computation of the exposure profile. As we said previ-
ously, the main issue of the method is that we still need to compute the price of the product at
discrete times 0 = t0 < . . . < tN = T for the output labels. However, assuming that it can be
done in an efficient manner, the method can be interesting as it will immediately provide the
exposure profile leading to direct computation of CV A0 and FV A0.

We give below the architecture of the neural network we used :

Table 6.3: Neural network architecture for the EPE profile computation of a call in the B−S
model using the Deep Conditional Expectation Solver

Number of Inputs 2
Number of Outputs 100

Number of Hidden Layers 3
Number of Neurons per Layer 256

Activation Function ϕ(x) = x+ (ReLu)
Weight Initialization Xavier/Goriot

Gradient Descent Algorithm Adam Optimizer (learning rate = 0.001)

2In this case, we will consider a neural network with a multidimensional output.
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Figure 6.2: EPE profile learning using Deep Conditional Expectation Solver for a call option
with (S0 = 100 and K = 100 on left) and (S0 = 110 and K = 100 on right)

As we can see from the figure 6.2 above, the neural network seems to fail learning decently
the exposure profile. We can see that in the case where we put as inputs of the NN (S0 = 100
and K = 100), the output profile is decent but in the case of (S0 = 110 and K = 100), it does
make quite a lot of error.

Some remarks on the Deep Conditional Expectation Solver for CV A0 and FV A0

computations

• Assuming we can’t sample τC , the computation of CV A and FV A both need the knowl-
edge of the exposure profile. In the case we don’t have closed formulas for prices at any
time t during the lifetime of the transaction which is the most common case in more
complicated models, therefore the algorithm doesn’t seem to be a good alternative to the
classical nested Monte-Carlo if it is not combined with other numerical methods to make
it useful in practice.

• Moreover, from the numerical results we did on an european call, we see that the learning
of the exposure is not really efficient and there is still a lot of error in the NN approxi-
mation which could be explained by the NN architecture.

The algorithm therefore needs to be improved to be useful in practice but look promising as we
can expect to learn a function that can learn the expected profile on discrete times during the
life time of the transaction. Working on the neural network architecture by maybe using other
architectures than simple FFNN could maybe improve the learning process. An appropriate
hyperparameter tuning of the neural networks can also be relevant as it could improve globally
the performance of the neural networks.
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6.1.2 An application to DIM and MVA

As we mentioned in the first chapters, initial margin named as IM aims to cover the potential
future exposure that could arise between the default time of a counterparty and the time that
the surviving party has closed its position after default. This is the key component of the
MVA computation which we will the discussion of this subsection. We will refer to the SIMM
methodology which we will introduced below for the computation of this XV A.

The SIMM framework : International Swaps and Derivatives Association (ISDA) has in-
troduced the Standard Initial Margin Model (SIMM) which is a sensitivity approach based on
the risk profile of a position and which is defined for the 4 following product classes :

• RatesFX

• Credit

• Equity

• Commodity

Each trade is assigned to an individual product class and SIMM is calculated separetely for
each product class. For each product class, we can define the risk class that are part of the
produt class and each risk class is kept separated between product classes even if they share a
same risk class. The SIMM considers the 6 following risk classes :

• Interest Rate

• Credit (Qualifying)

• Credit (Non Qualifying)

• Equity

• Commodity

• FX

From that, they define the IM for each risk class considering delta, vega and curvature sensi-
tivities such as we have for each risk class R :

IMR = DeltaMarginR + V egaMarginR + CurvatureMarginR. (6.1)

They then define SIMMX the initial margin associated with the product class X as follows :

SIMMX =

√∑
r

IM2
r +

∑
r,s r ̸=r

ψr,sIMrIMs. (6.2)

where IMr refers to the margin associated with the risk class r and ψr,s the correlation between
the risk classes r and s with a correlation matrix given in Table 6.4 from [20]. The total SIMM
is then the sum over each product class resulting in :

SIMM = SIMMRatesFX + SIMMCredit + SIMMEquity + SIMMCommodity. (6.3)

In [20], they give details of how to calculate the sensitivities in different scenarios.
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Table 6.4: Correlation matrix of the risk classes in the SIMM framework

Risk Class Interest Rate Credit
Qualifying

Credit
Non Qualifying Equity Commodity FX

Interest Rate 4% 4% 7% 37% 14%
Credit

Qualifying 4% 54% 70% 27% 37%

Credit
Non Qualifying 4% 54% 46% 24% 15%

Equity 7% 70% 46% 35% 39%
Commodity 37% 27% 24% 35% 35%

FX 14% 37% 15% 39% 35%

As we wrote in equation (2.29), the dynamic initial margin profile can be calculated as :

DIM(t) = EQ[e−
∫ t
0 ruduIM(t)|F0].

Once this quantity is computed and according to a funding spread between the collateral rate
and the risk free rate denoted by f , we can then compute the MVA0 as follows :

MVA0 =

∫ T

0

f(s)DIM(s)ds.

As we can see, the main feature of the computation of the MVA is the calculation of the DIM
as it will involve the calculation of the IM profile.
We will considerer the following approach introduced in [21] by Villarino and Leitao where
they used the Deep Conditional Expectation Solver to compute in an efficient manner the
DIM profile and associated MVA0. The methodology is similar to the one we proposed in the
previous subsection so we just formulate it briefly.
As we can approximate the equation (6.4) by the following approximation considering t0 = 0 <
t1 < . . . < tN = T a timegrid of [0, T ].

MVA0 ≈
∑N−1

i=0
1
2
(f(ti)DIM(ti) + f(ti+1)DIM(ti+1))(ti+1 − ti).

We consider simlarly to the vector EPE the vector DIM ∈ RN+1 defined as times 0 = t0 <
. . . < tN = T . According to the equation (2.29), we can therefore write the vector DIM as the
following :

DIM =(EQ[IM(t0)|F0], . . . ,EQ[e−
∫ tN
0 rsdsIM(tN)|F0]).

Now, assuming that F0 is characterized by a a vector X of initial market state variable assumed
to be markovian , we then know that we can rewrite the vector DIM using deterministic
functions (Fti)i∈[0,N ]. If we note F=(Ft0 , . . . , FtN ), we then have :

DIM = (EQ[IM(t0)|X], . . . ,EQ[e−
∫ tN
0 IM(tN)|X]) = (Ft0(X), . . . , FtN (X)) = F(X). (6.4)

We then know aim to approximate F by using the subspace of neural networks. Writing
down the vector IM=(IM(t0), . . . , e

−
∫ tN
0 rsdsIM(tN)), we have also the following representation

for DIM :

DIM = EQ[IM|X]. (6.5)
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We write below the following algorithm which will be used to assess the accuracy of the
Deep Conditional Expectation Solver 3 by calculating the full nested Monte-Carlo procedure.

Algorithm 6.1 Nested Monte-Carlo algorithm for DIM computation (Algorithm from [21])
Inputs : Simulation times 0 = t0 < t1 < · · · < tN = T with ht time step.
Yield curve points at the ISDA-SIMM tenors for time t0, {Y 0

k }12k=1.
Model parameters Θ.
Number of MC paths, M .
Samples of the standard normal distribution i.i.d., (W )ij, j = 0 . . . ,M − 1, i = 0 . . . N − 1.
Output : Compute DIMi, the dynamical IM at time ti.
x0 ← Y 0

for i = 1, i < N + 1, i++ do
for j = 0, j < M , j ++ do

xij ←
(
xi−1
j ,W i−1

j ,Θ
)

{Y i
k,j}12k=1 ←

(
xij,Θ

)
V i
j ← {Y i

k,j}12k=1

for k = 1, k < 13,k ++ do
Y i
k,j ← Y i

k,j + 1bp
V i
k,j ← {Y i

k,j}12k=1

Si
k,j ← V i

k,j − V
j
i

Y i
k,j ← Y i

k,j − 1bp

end
IMi

j ← {Si
k,j}12k=1

IMi
j ← IMi

je
−

∑i
k̂=0

rj
k̂
(ti+1−ti)

end

DIMi ←
1

M

∑M
j=0 IMi

j Approximate DIM from its MC estimator.

end

Some numerical results :

We provided here some numerical results after applying Algorithm 6.1 and comparing it with
the classical nested Monte-Carlo simulation

An interest rate swap :

Let’s go back on the G2++ model that we already introduced in the previous section with the
following dynamics :

dx(t) = −κx dt+ σx dW
x
t , x(0) = 0.

dy(t) = −κy dt+ σy dW
y
t , y(0) = 0.

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0.

(6.6)

with :
3The Algorithm is taken directly from [21] as we exactly perform the same case instead that we use a G2++

model.
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• ϕ(t) = fM(0, t) + σ2
x

2κx
(1− e−κxt)2 +

σ2
y

2κy
(1− e−κyt)2 + ρσxσy

κxκy
(1− e−κyt)(1− e−κxt).

• d < W x,W y >t= ρdt.

As we know, the G2 + + model is fully caracterized by the following set of parameters X =
(κx, σx, κy, σy, ρ, r0). We will considerer N = 100 discretization timesteps.
As we will consider an interest rate swap which is not subject to optionality , we won’t take
care of the vega of such derivatives and we will work only with the interest rate risk factor such
as :

IMIR = DeltaMarginIR. (6.7)

We will consider in the following numerical result an interest swap starting at t0 = 1Y , ending
at tN = 6Y with 20 payments dates and strike K = 0.01.
We give the actual architecture of the neural network in the table below :

Table 6.5: Neural network architecture for the DIM computation in the G2 + + model

Number of Inputs 6
Number of Outputs 101

Number of Hidden Layers 3
Number of Neurons per Layer 256

Activation Function ϕ(x) = x+ (ReLu)
Weight Initialization Xavier/Goriot

Gradient Descent Algorithm Adam Optimizer (learning rate = 0.001)

We also sample K = 10000 vectors of initial parameters X with the lower and upper bounds
parameters considered in the table below. We consider for each variable an uniform sampling
of the form U(min(X),max(X))

Table 6.6: Lower and upper bounds for market state variable in the G2 + + model

X κx σx κy σy ρ r0
min(X) 2.4% 0.5% 3% 0.5% −0.999 −3%
max(X) 12% 2.5% 15% 2.5% 0.999 6%

We provide some plots of the distribution of some parameters according to the uniform
sampling with the bounds from Table 6.6.

Figure 6.3: Distribution of parameters r0 and ρ
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As we said, we aim to learn from noisy labels of DIM in the fact that only one Monte-Carlo
path will generate our output dataset. We provived below some noisy labels from the same set
of parameters :

Figure 6.4: Noisy labels (with M = 1 inner path) for the DIM computation for the following
set of parameters : (κx = 0.10, σx = 0.02, κy = 0.12, σy = 0.02, ρ = −0.3 and r0 = 0.01)

Once we have built our dataset, we can then train our neural network according to the Deep
Conditional Expectation Solver algorithm. We provide below some metrics on the training
phase.

Figure 6.5: Loss training process for the DIM computation with Deep Conditional Expectation
Solver for a portfolio of 1 swap

Table 6.7: Metric errors after the learning phase for the DIM computation

MSE MAE
Training Set 0.051206 0.150324

Test Set 0.048375 0.146877
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We will illustrate the accuracy of the learning phase by providing several plots which com-
pares the actual nested Monte-Carlo approximation which will be considered as the actual
groundtruth true value and the NN approximation. However, as the nested Monte-Carlo is
computationally intense, we had to consider only M = 1000 inner paths in Algorithm 6.1.
We give in the following table the parameters that were used for each case of the figure 6.6.

Table 6.8: Set of parameters used to compare NN accuracy in DIM computation

Parameters κx σx κy σy ρ r0
Case 1 0.10 0.015 0.12 0.015 −0.8 0.04
Case 2 0.10 0.02 0.12 0.02 −0.3 0.03
Case 3 0.10 0.015 0.12 0.015 −0.6 0.015
Case 4 0.10 0.02 0.12 0.02 0 0.01

((a)) Case 1 ((b)) Case 2

((c)) Case 3 ((d)) Case 4

Figure 6.6: Study of the Deep Conditional Expectation Solver algorithm with comparison with
the nested Monte-Carlo for various set of parameters

Some remarks on the methodology :

As we can see from figure 6.6, the NN seems to approximate quite well the groundtruth value
from the nested Monte-Carlo except for the figure 6.6(d) where it looks to be less accurate than
for the others.
As we said, the algorithm has been trained for only 10000 values and we could of course use
more scenarios to feed the neural network.
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Moreover, as we said, we only used M = 1000 paths for the Nested-Monte-Carlo as it was way
too computationally intense leading potentially to inaccurate results.
In our case , we illustrate the algorithm for a portfolio consisting of a single interest swap
with defined parameters but we can imagine that we could extend this methodology to other
securities and to calculate the DIM and the resulting MVA from an efficient manner in a real
XV A engine by taking profit of the methodology we used in this section.
For the IM profile on itself, we can observe a decreasing step function which is intuitive for
an interest rate swap because at each exchange of payment, the residual value of the swap is
reduced and therefore the initial margin which represents a value at risk is also reduced. We
can also observe that the decay takes place until 0 which is also expected because at the end
of the swap no more exchanges are done and therefore there is no more risk.

A case study on a portfolio of 5 swaps

To assess the methodology on a more complex setting, we will illustrate it on a portfolio of 5
interest swaps which we will assume to have the following parameters :

Table 6.9: Parameters of the 5 swaps used in the DIM computation

Parameters Start Date Terminal Date Number of Payments Fixed Rate
Swap 1 1Y 6Y 20 0.01
Swap 2 0Y 6Y 10 0.01
Swap 3 1.5Y 6Y 10 0.01
Swap 4 0.5Y 6Y 5 0.01
Swap 5 3Y 6Y 20 0.01

We only show 2 plots of portfolios for the DIM profile with the following parameters
configuration :

Table 6.10: Parameters used in the DIM computation on a portfolio of 5 swaps

Parameters κx σx κy σy ρ r0
Case 1 0.10 0.12 0.015 0.015 −0.6 0.015
Case 2 0.10 0.12 0.02 0.02 −0.8 0.01

We give below the loss training process on a dataset composed of 10000 noisy labels of DIM
for 5 swaps and the comparison of the neural network with the nested Monte-Carlo.
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Figure 6.7: Noisy labels (with M=1 inner path) for the following set of parameters (κx = 0.10,
σx = 0.015, κy = 0.12, σy = 0.015, ρ = −0.6 and r0 = 0.015)

Figure 6.8: Loss training process for the DIM computation with Deep Conditional Expectation
Solver for a portfolio of 5 swaps

Table 6.11: Metric errors after the learning phase on the portfolio of 5 swaps

MSE MAE
Training Set 1.220055 0.752931

Test Set 1.180061 0.740112

As we can observe with comparison with the case of a single interest rate swap, the MSE
loss after the learning phase is way higher but it can be explained as the values taken by the
DIM are bigger and we didn’t rescale the data at the beginning so it could maybe lead to
improvements on this aspect.
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Figure 6.9: DIM computation with Deep Conditional Expectation Solver on a portfolio of 5
Swaps

Some remarks on the results

• As we can see from the plots above, theNN tends to learn accurately the form of theDIM
in a more complex setup with a portfolio composed of 5 swaps in 2 different parameters
settings. It highlights the fact that the Deep Conditional Expectation Solver can therefore
be used in an efficient XV A engine.

• The form of the DIM is way more hard to understand in this context in comparison to
the previous one when we only considered the case of a single interest rate swap but as we
can see at the final date T , the initial margin still goes to 0 as there are no more exchange
flows.

Global remarks on the Deep Conditional Expectation Solver for computing MVA0

• The results on this more complex portfolio highlights the fact that the Deep Conditional
Expectation Solver can be used in an efficient XV A engine for fast computations of DIM
profile once the neural network is trained compared to single computations of DIM which
took in our case more than half an hour and is therefore unfeasible in a production setting.

• The model can of course be improved by the choice of a better architecture of the neu-
ral network and hyperparameters settings but the core idea of the NN to approximate
efficiently the DIM profile is illustrated. The computation of MVA0 follows from the
integration of the DIM profile multiplied by the function f over the lifetime of the port-
folio.
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6.2 Gaussian Processes Regression for XVA computations
In this section , we will follow the methodology from [22] by Crépey and Dixon 4 where they
use both GPR and M − C properties to build an efficient computation of expected exposure
profile and associated CV A0.

6.2.1 The GPR-MC for EE profile and CVA

We will focus on the following representation of CV A0 :

CV A0 ≈ −(1−RC)
N−1∑
i=0

EPE(ti)(G(ti+1)−G(ti)).

where N is the number of exposure dates. We approximate the expression of EPE(ti) using
M − C which gives :

CV A0 ≈ −
(1−RC)

M

M∑
j=1

N−1∑
i=0

V (ti, X
j
ti)

+

Bj
ti

(G(ti+1)−G(ti)). (6.8)

where M is the number of samples. As we said in the previous chapter, our goal will be to
approximate the quantity EPE(ti) by using a GPR such as we have the following estimator :

ˆCV A0 = −
(1−RC)

M

M∑
j=1

N−1∑
i=0

(E[V∗|X, Y, x∗ = Xj
ti ])

+

Bj
ti

(G(ti+1)−G(ti)). (6.9)

We also have a measurement of the MC-sampling error 5 defined by :

1

M − 1

M∑
j=1

[−(1−RC)
N−1∑
i=0

1

Bj
ti

(E[V∗|X, y, x∗ = Xj
ti ])

+(G(ti+1)−G(ti))− ˆCV A0]
2. (6.10)

Remark. Hence, we use machine learning to learn the component derivative exposures as a
function of the underlying and other parameters, including (by slicing in time) time to maturity.
We will therefore train as much GPR as much as discretization times N we set. The ensuing
CVA computations are then done by Monte-Carlo simulation based on (6.9) The authors of [22]
named this method MC−GP . On the computational aspect, it saves one level of nested Monte-
Carlo as in the normal case the price V (ti, Xt

j
i ) would need to be computed using a Monte-Carlo

procedure.

We will illustrate the methodology on the case of portfolios of european derivatives under
the B − S model and interest rate swaps under the Hull & White model aas they provide
benchmark solutions.

The algorithm can be written as follows :

4Their base code is available on https://github.com/mfrdixon/GP-CVA/tree/master.
5See [22] for further informations.
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Algorithm 6.2 GPR−MC algorithm for exposure profile and CV A0 computations
Input Parameters : T maturity contract, timegrid T = {0 = t0 < t1 < . . . < tN = T},
CV A0 = 0 , (GPRi)i∈[[0;N−1]] a family of GPR trained at each time ti

for i = 0, . . . , N − 1 do

CV A+ = (1−RC)
∑M

j=1

GPRi(X
j
ti
)

Bj
ti

(G(ti+1)−G(ti))

end
Output Parameters : CV A0 computed with the GPR−MC algorithm

Some numerical results on portfolios of European derivatives

We will illustrate the GPR−MC methodology on the case of 3 portfolios of european deriva-
tives. We will start from simple portfolio and we will complexify it to see the scalability of the
algorithm.
We give in the tables below the parameters used in the numerical experiments below and the
composition of equity portfolios.

Table 6.12: Parameters used in the numerical experiments in the GPR methodology for EE
profile computation of equity portfolios

Parameter Description Symbol Value
Strike of the Call Option KC 110
Strike of the Put Option KP 90

Initial Stock Price S0 100
Interest Risk Free Rate r 0

Volatility σ 0.3
Default Intensity λ 0.01

Number of simulations M 1000
Number of time steps in the Euler Scheme NMC 100

Number of Exposure Time N 10
Number of Training points NTraining 30
Number of Testing points NTesting 40

Table 6.13: Description of the composition of equity portfolios used in the numerical experi-
ments

Portfolio Composition Number of calls Number of puts
Portfolio 1 1 0
Portfolio 2 10 5
Portfolio 3 5 -5

For each portfolio , we will compute the following quantities :

• The expected profile of the portfolio.

• The error on the learning profile of the exposure by the GPR with a confidence interval
using the properties of the GPR.

• The computation of CV A0 using the Monte-Carlo procedure which allows the computa-
tion of a confidence interval.
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Portfolio 1 :

Figure 6.10: EE profile of the 1st equity portfolio using the GP − MC methodology and
associated error in the calculation of the EE profile

We give also in the table below the results of CV A0 with confidence interval.

Table 6.14: CV A0 using the GP −MC methodology on the 1st equity portfolio

True Value GP −MC estimation Upper Bound Lower Bound
CV A0 on Portfolio 1 0.15802482 0.15802473 0.16180155 0.15424791

Remarks on the results on the 1st portfolio :

• As we can see from the plots above, we recover the profile we had in the first chapters of
this dissertation. The profile is not perfectly flat as it comes from the relatively low MC
simulations M . However, when comparing it with the exact exposure calculated with the
true B − S prices, we see on the error plot that the error on the EE is really low which
means that the performance of the GPR is particularly high.

• The computation of CV A0 shows the remarkable accuracy of the GPR as the difference
between the "true value" and the GP −MC estimation is almost similar up to 10−6.
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Portfolio 2 :

Figure 6.11: EE profile of the 2nd equity portfolio using the GP − MC methodology and
associated error in the calculation of the EE profile

We give also in the table below the results of CV A0 with confidence interval.

Table 6.15: CV A0 using the GP −MC methodology on the 2nd equity portfolio

True Value GP −MC estimation Upper Bound Lower Bound
CV A0 on Portfolio 2 2.2333603 2.2333624 2.2654195 2.2013054

Remarks on the results on the 2nd portfolio

• As we can see from the profile of the exposure, we see again the flat profile of the exposure
which is intuitive as the investor holds only long positions on the derivatives. Similarly
to the first portfolio, the results are quite similar expect that the error is a bit higher but
up to a 10−4 factor.

• The computation of CV A0 shows also the remarkable accuracy of the GPR as the dif-
ference between the "True Value" and the GP −MC estimation is almost similar up to
10−6.
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Portfolio 3 : 6

Figure 6.12: EE profile on the 3rd portfolio using the GP −MC methodology and associated
error in the calculation of the EE profile

Table 6.16: CV A0 using the GP −MC methodology on the 3rd equity portfolio

True Value GP −MC estimation Upper Bound Lower Bound
CV A0 on Portfolio 3 0.6092085 0.6092076 0.61602855 0.6023867

6For this portfolio, we choose the same strike KC = KP = 100 and we plot also the ENE as the investor
has short positions in put options. By choosing theses strikes, we should reproduce the exposure of a forward
according to Call-Put parity.
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Remarks on the results on the 3rd portfolio

• As we can see from the exposure profile, we recover the exposure of the forward we had in
the previous sections. As we noticed, the portfolio composition helds to lead to this result
so it’s a way to compare the accuracy of the GPR −MC methodology in computation
the exposure profile. Similarly to the previous results, the errors done on learning the
profile exposures are really low up to 10−5 in the EPE computation and 10−4 in the
ENE computation

• Similarly to the previous results, the CV A0 computation is really accurate up to 10−6.

Some numerical results on swap portfolios

We also consider the following swap portfolios to assess the methodology. We decided to work
under the Hull & White model for the computation of the exposure profile and associated
CV A0.

Table 6.17: Composition of the 1st swap portfolio used in the numerical experiments

Parameters Start Date Terminal Date Number of Payments Fixed Rate
Swap 1 1Y 10Y 20 0.01

Table 6.18: Composition of the 2nd swap portfolio used in the numerical experiments

Parameters Start Date Terminal Date Number of Payments Fixed Rate
Swap 1 1Y 10Y 20 0.01
Swap 2 0Y 10Y 10 0.01
Swap 3 1.5Y 10Y 10 0.01
Swap 4 0.5Y 10Y 5 0.01
Swap 5 3Y 10Y 20 0.01
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Portfolio 1 :

Figure 6.13: EE profile of a single swap using the GP −MC methodology and associated error
in the calculation of the EE profile

We give also in the table below the results of CV A0 with confidence interval.

Table 6.19: CV A0 using the GP −MC methodology on the 1st swap portfolio

True Value GP −MC estimation Upper Bound Lower Bound
CV A0 on Portfolio 1 2.598366 2.5983661 2.858947 2.33779
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Portfolio 2 :

Figure 6.14: EE profile of a 5-swap Portfolio using the GP −MC methodology and associated
error in the calculation of the EE profile

We give also in the table below the results of CV A0 with confidence interval.

Table 6.20: CV A0 using the GP −MC methodology on the 2nd swap portfolio

True Value GP −MC estimation Upper Bound Lower Bound
CV A0 on Portfolio 2 38.616476 38.616478 42.809036 34.4239205
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Remarks on the results on swaps portfolio :

• As we can see from the profile of the exposure, we recover the profile we had in the first
chapters of this dissertation. Therefore, we show that the GP −MC can be extended to
the case of swap portfolios with similar accuracy results than in the equity portfolios.

• The computation of CV A0 shows the remarkable accuracy of the GPR as the difference
between the "true value" and the GP −MC estimation is almost similar up to 10−6.

Global remarks on the GPR−MC methodology :

• As we have shown on the plots above, the GPR −MC has good performance and can
therefore be used in order to reduce one level of the nested Monte-Carlo by learning the
price surface at every discretization time of the exposure profile.

• As we mentionned in the previous chapter, the learning price surface is very reliable to
the quality of the labels we are giving to the GPR. We see that when feeding the GPR
with highly noisy labels, the performance was of course deteroriated and we had to make
sure to be careful when using the methodology that the learning of the price surface is
good so we minimize as much as possible the error done by the GPR in the computation
of exposure profile such that the global error comes from the outer MC computation.

• We didn’t illustrate the case of GPR for high-dimensionnal assets but it has been show in
[23] by Goudenège, Molent and Zanette that even for bermudan derivatives this method
can be well suited for CV A and FV A computations as they both rely on the computation
of the expected exposure profile.
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6.3 Deep XVA Solver

6.3 Deep XVA Solver
In this subsection , we will mostly refer to the article [19] from Gnoatto, Picarelli and Reisinger
named Deep xVA solver – A neural network based counterparty credit risk management frame-
work as they provide an entire framework for the use of the Deep BSDE solver in the XV A
context. As we mentionned, the Deep BSDE Solver is an algorithm which can help to overcome
the curse of dimensionality issue and is therefore interesting to study7. For this, we will need to
write the XV As in a convenient way to make the Deep BSDE Solver usable in practice. The
core assumption in the XV A context is to assume that the default times of the counterparty
C and A are exponentially distributed with time-dependent intensity such that we can write :

τC = inf{t ≥ 0 :

∫ t

0

λCs ds ≥ ν1}.

τA = inf{t ≥ 0 :

∫ t

0

λAs ds ≥ ν2}.

where λC and λA are two positive processes adapted to the filtration Ft and ν1 and ν2 are 2
exponential random variables assumed to be independant from G the enlarged filtration by the
potential defaults of A and C.
As we already showed previously in this report, we know that we can write CV A and FV A 8

as follows (on the event that no defaut has been occured before t) :

CV At = (1−RC)EQ[

∫ T

t

e−
∫ s
t (ru+λC

u +λA
u )du(Vs)

+λCs ds|Ft].

FV At = EQ[

∫ T

t

e−
∫ s
t (ru+λC

u +λA
u )du(sBs (Vs)

+ − sLs (Vs)−)ds|Ft].

Under markovian models, the information given by Ft can be simplified by Xt where X denotes
the market risk factors associated with the diffusion, we can therefore write by noting ϕCV A

the associated value function of CV A : 9

ϕCV A(t, x) = (1−RC)EQ[

∫ T

t

e−
∫ s
t (ru+λC

u +λA
u )du(Vs)

+λCs ds|Xt = x]. (6.11)

Theses forms are really convenient as we can use the Feymann-Kac theorem to write the fol-
lowing PDE for ϕCV A the associated value function of the CV A :

∂tϕ
CV A(t, x) + LϕCV A(t, x)− (rt + λCt + λAt )ϕ

CV A(t, x) + (1−RC)(Vt)
+λCt = 0, ∀(t, x) ∈ [0, T [×Ω.

(6.12)
ϕCV A(T, .) = 0, ∀x ∈ Ω.

(6.13)

where L is the generator of the diffusion characterized by the diffusion process X.

7They provide all their basecode at https://github.com/AlessandroGnoatto/Deep-xVA-Solver.
8In the article, they used the recursive FV A form which we talked in the first chapters but we stick to the

FV A form we used in this chapter.
9A similar PDE can be derived for FVA.
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6.3 Deep XVA Solver

Therefore, by setting the following quantities :

• f(t,Xt, Yt, Zt) = (1−RC)λCt (Vt)
+ − (rt + λCt + λAt )Yt.

• g(XT ) = 0.

We see that we are in the setting of the Deep BSDE Solver.

Remark. At this point, we need to be able to compute the quantity (Vt)
+ which is the exposure

of the portfolio on which the CVA is computed. In the numerical results, we will use a B − S
model on simple options and the price will be determined using the Deep BSDE Solver. 10

6.3.1 EE profile computation of some derivatives

In this subsection, we will describe the exposure profile calculation for a portfolio using the
Deep BSDE approach. For this, we rely to the following Algorithm introduced in [19] where
all the notations are also introduced. They start by learning the parameters associated to
the financial products on which the CV A will be computed. Once the training is done, they
simulate the value of the portfolio from the NN approximation and they compute the XV As
based on this first computation of the exposure profile. This procedure can be summarized in
the 2 following algorithms.

Algorithm 6.3 Deep algorithm for exposure simulation (Algorithm from [19])
Set parameters: N,L,B. N time steps, L paths for inner Monte-Carlo loop, B batch size
Fix architecture of ANN

Deep BSDE Solver (N ,L, B):
Simulate L paths (S̃

(ℓ)
n )n=0,...,N , ℓ = 1, . . . , L of the forward dynamics.

Define the neural networks (φρ
n)n=1,...,N .

for m = 1, . . . ,M do
Minimize over ξ and ρ

1

L

L∑
ℓ=1

(
gm(S̃

(ℓ)
N )− V̂m,ξ,ρ,(ℓ)

N

)2
,

subject to
V̂m,ξ,ρ,(ℓ)
n+1 = V̂m,ξ,ρ,(ℓ)

n + rtnV̂m,ξ,ρ,(ℓ)
n ∆t+ (Ẑm,ρ,(ℓ)

n )⊤∆W (ℓ)
n ,

V̂m,ξ,ρ,(ℓ)
0 = ξ,

Ẑρ,(ℓ)
n = φρ

n(S̃
(ℓ)
n ).

(6.14)

Save the optimizer (ξ∗m, ρ
∗
m).

end
end

10Indeed, the Deep BSDE Solver is also well suited for the pricing of derivatives as we already mentionned
in the previous chapter.
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Algorithm 6.4 Deep XVA Solver for non-recursive valuation adjustments (Algorithm from
[19])
Apply Algorithm 6.3

Set parameters: P paths for the outer Monte-Carlo loop
Simulate, for m = 1 . . .M ,

(
V̂ m,ξ∗m,ρ∗m,(p)
n

)
n=0...N,p=1...P

by means of (6.14) with (ξ, ρ) =

(ξ∗m, ρ
∗
m).

Define V̂ ∗,(p)
n :=

∑M
m=1 V̂

m,ξ∗m,ρ∗m,(p)
n for n = 0 . . . N , p = 1 . . . P .

Compute the adjustment as
1

P

P∑
i=1

(
N∑

n=0

ηnΦtn(V̂ ∗,(p)
n )

)
.

Numerical Results :

We propose 2 numerical experiments in the B − S setting :

• Calculation of the EE profile for a forward contract following Algorithm 6.3.

• Calculation of the EE profile on a very high dimensional basket call option with d = 100
assets following Algorithm 6.3.

EE profile of a forward

We will consider the case of a classic forward contract with the following payoff :

g(ST ) = (ST −K).

Figure 6.15: EE profile computation of a forward contract under B-S using the Deep BSDE
Solver
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EE profile of a basket option

We consider now the case of a basket call option on d = 100 assets with the following payoff :

g(S1
T , . . . , S

d
T ) = (

d∑
i=1

Si
T − dK)+.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

25

50

75

100

125

150

EE Profile for a Basket Call option on 100 assets

EPE = exact solution
EPE = deep solver approximation
ENE = exact solution
ENE = deep solver approximation

Figure 6.16: EE profile computation of a basket option on d = 100 assets under B-S using the
Deep BSDE Solver

Some remarks on the results

• As we can see from the plots above, the Deep BSDE Solver performs well even in the
high dimensionnal setting which highlights the potential overcome of the curse of dimen-
sionnality we are normally facing when dealing with classical Monte-Carlo methods.

• The main issue of the methodology is the need of a semi-linear PDE representation of
financial derivatives and XV As, otherwise we can’t apply the methodology we introduced
in this dissertation.

• In the article, they propose even further computations by computing risk measures on
CV A which is not the main topic of this dissertation that’s why we are not focusing on
this aspect but the Deep XVA Solver framework seems to be really efficient as it can
permit to price almost all the XV As in a same framework just by relying to their PDE
representation.
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6.3.2 Direct computation of XVAs using PDE representation

As we wrote in the introduction of this section, CV A and FV A are related to a PDE repre-
sentation according to Feymann-Kac formula and we show that on the event 1τC>t, the process
CV A can be reformulated as the solution of the following PDE with ϕCV A the associated value
function. 11

∂tϕ
CV A + LϕCV A − (rt + λCt + λAt )ϕ

CV A + (1−RC)(Vt)
+λCt = 0, ∀(t, x) ∈ [0, T [×R+

∗ .

ϕCV A(T, .) = 0, ∀x ∈ R+
∗ .

where the generation is given in the B − S framework by :

Lu(t, x) = rS∂Su(t, x) +
1

2
σ2S2∂2S2u(t, x).

For the process FV A, using also the Feymann-Kac formula, we have the following PDE with
ϕFV A the associated value function.

∂tϕ
FV A + LϕFV A − (rt + λCt + λAt )ϕ

FV A + (sbt(Vt)
+ − sLt (Vt)−) = 0, ∀(t, x) ∈ [0, T [×R+

∗ .

ϕFV A(T, .) = 0, ∀x ∈ R+
∗ .

Remark.

• In the case of ϕCV A,12 the function f is given by f(t, St, Yt, Zt) = (1−RC)(Vt)
+λCt − (rt+

λCt + λAt )Yt.

• In the case of ϕFV A, the function f is given by f(t, St, Yt, Zt) = (sbt(Vt)
+ − sLt (Vt)

−) −
(rt + λCt + λAt )Yt.

• In both cases, we see that the terminal value is always 0.

11We also study another Deep Learning algorithm named Deep Galerkin introduced in [24] for which we
provided some informations in the Annex D and some numerical results on XV A computations.

12If we want to incorporate DV A such that we aim to calculate the BCV A instead of the unilateral CV A,
the PDE representation is also straightforward with the function f given by f(t, St, Yt, Zt) = (1−RA)(Vt)

− −
(rt + λC

t + λA
t )Yt and null terminal value.
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We give below the algorithm introduced in [19] where the Deep BSDE Solver is used to
solve directly the PDEs associated with XV As;

Algorithm 6.5 Deep XVA Solver (Algorithm from [19])
Apply Algorithm 6.3.
Set parameters: P . P paths for outer Monte-Carlo loop
Fix architecture of ANN.
intrinsically defines the number of parameters R̄ (in general R̄ ̸= R)
Deep XVA-BSDE solver (N ,P ):

Simulate P paths (
(p)
n )n=0,...,N , p = 1, . . . , P , of the portfolio value.

Define the neural networks (ψζ
n)n=1,...,N .

Minimize over γ and ζ

1

P

P∑
p=1

(
X γ,ζ,(p)

N

)2
,

subject to
X γ,ζ,(p)

n+1 = X γ,ζ,(p)

n − f̄(tn, V̂(p)
n ,X γ,ζ,(p)

n )∆t+ (Zζ,(p)

n )⊤∆W (p)
n ,

X γ,ζ,(p)

0 = γ,

Zζ,(p)

n = ψζ
n(V̂(p)

n ).

(6.15)

end

Numerical results :

We will calculate CV A0 and FV A0 in our setting and compare it with the nested Monte-Carlo
to check the accuracy of the algorithm 6.5.

Table 6.21: Parameters used in the numerical experiments for the forward contract with the
Deep XVA Solver

Parameters S0 K r sb sl σ T λC λA RC

CV A0 100 100 0.0 X X 0.25 1 0.1 0 0.3
FV A0 100 100 X 0.02 0 0.25 1 0.1 0.01 X

Table 6.22: XV A0 estimation from Deep XVA Solver for a forward contract withMC performed
on 100000 samples

XV A Monte-Carlo Upper Bound (M − C) Lower Bound (M − C) NN Approximation
CVA 0.45229 0.45807 0.44650 0.45520
FVA 0.12757 0.12920 0.12595 0.12698

• As we can see from the numerical experiments on the forward contract, the algorithm 6.5
looks to perform very well as the NN approximation falls in the 95% confidence interval
of the Monte-Carlo.
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Table 6.23: Parameters used in the numerical experiments for the basket call option with
d = 100 assets with the Deep XVA Solver

Parameters S0 K r sb sl σ T λC λA RC

CV A0 100 100 0.01 X X 0.25 1 0.1 0 0.3
FV A0 100 100 X 0.02 0 0.25 1 0.1 0.01 X

Table 6.24: XV A0 estimation from Deep XVA Solver for a basket call option on d = 100 assets
with MC performed on 100000 samples

XV A Monte-Carlo Upper Bound (M − C) Lower Bound (M − C) NN Approximation
CVA 10.522 10.582 10.462 10.510
FVA 1.497 1.506 1.489 1.500

• As we can see, the accuracy of the NN from the Deep XVA Solver is still very accurate
even in a very large dimensionnal setting with the NN approximation falling in the 95%
confidence interval which shows the efficiency of the algorithm.

Global remarks on the chapter :

• In the first section of this chapter, we used the Deep Conditional Learning algorithm to
perform some XV A computations. We saw that it needed improvements to be really
useful in practice for computations of CV A0 or FV A0 but we show his efficiency in the
computation of DIM and MVA0 with an illustration with swap portfolios. We show
that the global error was really low and that the DIM profile was really similar between
the brute force nested Monte-Carlo approach and our NN estimation. Therefore, this
algorithm can be a tool to overcome the nested Monte-Carlo associated with the MVA0

computation.

• In the second section, we used GPR to calculate efficiently exposure profile. We also show
how it could be used combined with a classic Monte-Carlo procedure to provide accurate
estimation of CV A0 and we provide numerical examples on equity european derivatives
and swap portfolios. We also took advantage of both the techniques which provide error
bounds and we could therefore analyze the impact of both the methods in the final
computation of CV A0 showing that the GPR was particularly efficient in learning the
price surface. Therefore, the GPR−MC algorithm can be a tool to overcome the nested
Monte-Carlo associated with the CV A0 and FV A0 computation.

• Finally, in the last section , we used the Deep XVA Solver to compute efficient exposure
profile and associated CV A0 by solving directly the PDE related to the XV As. In
both cases, the Deep XVA Solver showed particularly good results once being trained.
Moreover, we illustrate it in a really high dimensionnal setting with a basket call on
d = 100 assets and we showed that the performance was still particularly accurate showing
the scalability of the approach.
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Chapter 7

Towards methods to hedge CCR

In this chapter, we will introduce hedging strategies for the counterparty credit risk exposure
using a credit derivative : Credit Default Swaps (CDS). The outline of the chapter is then
as follows. In the 1st section, we introduce CDS, the major financial instrument to hedge
the CCR. In the 2nd section, we talk about a dynamic hedging strategy : the Mean-Variance
Minimizing Strategy initiated in [25] by Ceci, Colaneri, Frey and Köck. We illustrate their
approach with examples arising from the financial market. We also follow their article where
they study the case of the counterparty risk of a reinsurer. In the last section, we will discuss
about a static hedging method based on the expected utility theory where an insurer looks
to solve his optimization problem by finding optimal reinsurance and hedging contracts in the
case of the potential defaut of the reinsurer.

7.1 An introduction to Credit Default Swaps
A CDS is a financial product that pays the buyer of protection, at a default time, the difference
between the face value and its recovery value, assuming that default occurs before some maturity
T . This instrument is particularly well suited for CCR since it makes a payment at the default
time τC . Moreover, the CDS market is liquid so theses products are well adapted to hedge
CCR.
Let’s describe the cashflows of such a financial product from the point of view of the protection
buyer.

• if τ < T , then at τ , the protection buyer receives the Loss Given Default which is referred
as Default Leg.

• The buyer of protection makes periodic coupons payments at time (Ti)i∈[[1;N ]]. If τ > Ti,
then an amount C0 is payed at Ti which results in the following discounted payoff :
C0e

−
∫ Ti
0 rsds1τ>Ti

. The quantity C0

∑N
i=1 EQ[e−

∫ Ti
0 rsds1τ>Ti

] is then referred as the Pre-
mium Leg

We will suppose in the following of this dissertation 1 that the coupon payments are made
continuously represented by a running spread premium ξ > 0. This implies that instead of
periodic coupons payments at time (Ti)[1;N ] the cashflow payment streams is then given by
(
∫ min(t,τ)

0
ξds)t≥0. We will also considerer that at default time τC , a deterministic protection

RCDS is given.
We recall that Ht = 1τC≤t. We can then denote the cumulative cashflows Ct in our setting as
the following :

1This is a common assumption in the litterature.
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Ct = RCDSHt − ξ
∫ min(t,τ)

0

ds = RCDSHt − ξ
∫ t

0

(1−Hu)du. (7.1)

From the process Ct, we can now derive the present value of the CDS considering the augmented
filtration G = (Gt)t∈[0,T ] on a probability space (Ω,G,Q) where Q is assumed to be a risk neutral
pricing measure. We then have that the present value of the future payments of the CDS are
given by :

Dt = EQ[
∫ T

t
e−

∫ u
t rsdsdCu|Gt] = EQ[RCDS

∫ T

t
e−

∫ u
t rsdsdHu − ξ

∫ T

t
e−

∫ u
t rsds(1−Hu)du|Gt].

We can now considerer the discounted gain process associated to the CDS which will be denoted
as the process CDS = (CDSt)t∈[0,T ] which can be written as follows :

CDSt = e−
∫ t
0 rsdsDt +

∫ t

0

e−
∫ u
0 rsdsdCu. (7.2)

We can note from the definition of Dt and using the fact C = (Ct)t∈[0,T ] is a G-adapted process
that CDSt = EQ[

∫ T

0
e−

∫ u
0 rsdsdCu|Gt]. We can see that the process CDSt then defined a Q

martingale adapted to the filtration G.
Let’s now considerer a trading strategy ξ = (ξ0, ξ1) where ξ0t represents the position in cash at
time t and ξ1t the position in the CDS at time t so we can define the strategy associated to
position ξ as V ξ

t = ξ1tDt + ξ0t and his discounted value Ṽ ξ
t = e−

∫ t
0 rsdsV ξ

t .
As in the pricing theory, the strategy (V ξ

t )t∈[0,T ] is said to be self-financing if we have the
following representation :

Ṽ ξ
t = V ξ

0 +

∫ t

0

ξ1sd(CDS)t. (7.3)

The representation of the portfolio Ṽ ξ
t defined by the equation (7.3) will help us to determine

strategies ξ which minimize an hedging criterion which will be the question of the next section.

7.2 Introduction to the Mean-Variance hedging framework
The Mean-Variance Hedging Criterion is a part of a larger class of hedging methods called
Quadratic Hedging. This class is called like this so because it consists in the minimization
of a quadratic problem. 2

7.2.1 Mathematical framework

First, we need to introduce what is called an admissible strategy ξ for a self-financing portfolio
V ξ.

Definition 7.2.1. A strategy ξ = (ξ0, ξ1) is said to be admissible if ξ0 is a G-adapted pro-
cess and ξ1 is a G-predictable process and we have the following integrability assumption :
EQ[
∫ T

0
(ξ1u)

2d⟨CDS⟩u] < +∞ where ⟨CDS⟩ represents the covariation of the process CDS with
himself.

The Mean-Variance Hedging Problem consists then in finding an admissible strategy ξ∗ with
initial value V ξ∗

0 such as the following quantity is minimized :
2Another quadratic hedging method called Local Risk Minimization has been heavily studied in the littera-

ture. See [26] for an application in our context of defaultable claims with random recovery process.
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EQ[(e−
∫ τC

0 rsds(1−RC)(VτC )
+1τC≤T − (V ξ

0 +

∫ T

0

ξ1t dCDSt))
2]. (7.4)

We will now focus on the method to find the strategy ξ∗. For this sake, we need to introduce
the process MCL which represents the discounted gain associated with credit loss and which
can be written as by noting the process CLt = (1−RC)(VτC )

+1τC≤t

MCL
t = EQ[

∫ T

0

e−
∫ s
0 rududCLs|Gt] =

∫ t

0

e−
∫ s
0 rududCLs + e−

∫ t
0 rsdsCV At. (7.5)

As we can see by its definition the process MCL defines a (G,Q) martingale. As the process
CDS defined in (7.2) defines also a (G,Q) martingale, we can state the following representation
for ξ1,∗.

Proposition 7.1. There exists a predictable process ξ1,∗ satisfying the integrability assump-
tion defined in Definition 7.2.1 and a martingale A with A0 = 0 such as (CDStAt)0≤t≤T is a
martingale or equivalently ⟨CDS,A⟩ is the null-process such that :

MCL
t =MCL

0 +

∫ t

0

ξ1,∗u d(CDS)u + At Q− a.s. 0 ≤ t ≤ T. (7.6)

The strategy ξ∗ with position in CDS equal to ξ1,∗ and initial value V0(ξ∗) = MCL
0 = CV A0 is

a mean-variance minimizing strategy.

Proof. The proof of this result is based on the Galtchouk-Kunita Wanatabe and the Föllmer-
Schweizer decomposition of MCL on CDS and can be found in [27] from Schweizer.

Following the representation of equation 7.6, and using the orthogonality property between
the processes A and CDS , it follows that we have :

⟨MCL, CDS⟩t =
∫ t

0
ξ1,∗u d⟨CDS⟩u 0 ≤ t ≤ T .

We then see that ξ1,∗ can be computed as d⟨MCL,CDS⟩
d⟨CDS⟩ and the calculation of this quantity is

then required to fully caracterize the minimizing strategy.

7.2.2 An application to the CCR in the financial market

In this subsection, we are going to illustrate the Mean-Variance Methodology for some financial
products in the B − S model under the following dynamics (with λ = (λt)t≥0 representing the
default intensity such that we have Q(τC > t|Ft) = e−

∫ t
0 λsds).

dSt = St(rdt+ σdW 1
t ), S0 ∈ R+

∗ .

dλt = b(λt)dt+ σ(λt)(ρdW
1
t +

√
1− ρ2dW 2

t ), λ0 ∈ R+
∗ .

We will considerer the case of an european derivative of payoff ϕ(ST ) where T is the maturity
of the contract and K the potential strike associated with the european derivative. As we said
in the previous section, finding the optimal strategy ξ∗ relies on finding the Galtchouk-Kunita
Wanatabe of the process MCL. First, we need to derive the dynamics of MCL. For every
0 ≤ t ≤ T , we have :

MCL
t = (1−RC)

∫ t

0
e−rs(Vs)

+dHs + e−rtCV At.

so that :
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dMCL
t = e−rt

(
(1−RC)(Vt)

+dHt − rCV Atdt+ dCV At

)
.

We see at this point that we will need to characterize the dynamics of the process CV A. From
(2.14), we know that in our setting CV A is given by :

CV At = (1−Ht)(1−RC)EQ[

∫ T

t

e−
∫ u
t (r+λs)ds(Vu)

+λudu|Ft]. (7.7)

Let’s note the term fCV A(t, St, λt) = EQ[
∫ T

t
e−

∫ u
t (r+λs)ds(Vu)

+λudu|Ft]
3 such that we have :

CV At = (1−Ht)(1−RC)fCV A(t, St, λt). (7.8)

We can therefore write the dynamics of MCL as follows :

dMCL
t = (1−RC)e−rt

(
(Vt)

+ − fCV A(t, St, λt))dHt,

− r(1−Ht)f
CV A(t, St, λt)dt+ (1−Ht)df

CV A(t, St, λt)
)
. (7.9)

Applying Itô formula to the term fCV A(t, St, λt), we have :

dfCV A =
(
σS∂Sf

CV A + ρσ(λt)∂λf
CV A

)
dW 1

t + ∂λf
CV Aσ(λt)

√
1− ρ2dW 2

t

+
(
∂tf

CV A + rS∂Sf
CV A +

1

2
σ2S2∂2Sf

CV A

+ ∂λf
CV Ab(λt) +

1

2
σ2(λt)∂

2
λ2fCV A + ρσσ(λt)∂

2
Sλf

CV A
)
dt.

Moreover, we already show that fCV A is solution of the following PDE according to Feymann-
Kac formula.

∂tf
CV A + LS,λfCV A + λ(V (t, s))+ = (λ+ r)fCV A, ∀(t, s, λ) ∈ [0, T [×R+

∗ × R+
∗ .

fCV A(T, s, λ) = 0, ∀(s, λ) ∈ R+
∗ × R+

∗ .

Therefore, we can write the dynamics of dMCL
t as follows :

dMCL
t = (1−RC)e−rt

(
(Vt)

+dHt + fCV A(λtdt−Ht)

+ (σS∂Sf
CV A + ρσ(λt)∂λf

CV A)dW 1
t + ∂λf

CV Aσ(λt)
√

1− ρ2dW 2
t

)
.

Deriving the dynamics of CDS :

Let’s focus now on the dynamics of CDS. From equation (7.2), we can write :

dCDSt = e−rt(−rdDt + dCt).

3The form is justified by the markovian property of the processes S and λ
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Proposition 7.2. The process D is given by :

Dt = (1−Ht)g(t, Yt). (7.10)

where g : [0, T ]× R→ R can be written as follows :

g(t, Yt) = EQ[

∫ T

t

e−
∫ u
t r+λsds(RCDSλu − ξ)du|Ft]. (7.11)

Proof. The proof of this result is based on similar arguments as used in [25]

By characterizing the term , we arrive at the following dynamics of CDS :

d(CDS)t = e−rt((RCDS − g(t, λt))(dHt − λtdt) + (1−Ht)σ(λt)∂λg(t, λt)(ρdW
1
t +

√
1− ρ2dW 2

s )).
(7.12)

Therefore, we are able to calcule the optimal hedging strategy ξ1,∗. We have thefore by noting
g = g(t, λt) and fCV A = fCV A(t, St, λt) :

d⟨MCL, CDS⟩t = (1−RC)e−2rt(RCDS − g)(V (t, St)
+ − fCV A)dHt

+ (1−RC)e−2rt(1−Ht)σ
2(λt)∂λf

CV A∂λgdt

+ (1−RC)e−2rt(1−Ht)ρσSσ(λt)∂Sf
CV A∂λgdt.

d⟨CDS⟩t = e−2rt(RCDS − g)2dHt + e−2rt(1−Ht)σ(λt)
2(∂λg)

2dt.

A special case for numerical results :

We will set for sake of simplicity for the numerical results :

• σ(λt) = 0 and b(λt) = 0 such that λt = λ > 0 ∀t ∈ [0, T ].

Under this assumption, we can write the optimal strategy as follows :

ξ1,∗t = (1−Ht)
(1−RC)(V (t, St)

+ − fCV A(t, St, λ))

(RCDS − g(t, λ))
. (7.13)

In the case of an european option with payoff ϕ(ST ), we already show that :

fCV A(t, St, λ) = V (t, St)(1− e−λ(T−t)).

V (t, St) = EQ[e−r(T−t)ϕ(ST )|Ft].

ξ1,∗t = (1−Ht)
(1−RC)V (t, St)e

−λ(T−t)

RCDS − g(t, λ)
. (7.14)

In our setting, we can calculate the function g(t, λ) as follows :

g(t, λ) = EQ[

∫ T

t

e−
∫ u
t (r+λ)ds(RCDSλ− ξ)du|Ft] = RCDS(1− e−λ(T−t)) +

ξ

λ
(e−λ(T−t) − 1).

For the computation of (d(CDS)t)t≥0, we need to distinct 3 cases.

• Before the jump characterized by t < τC , we have d(CDS)t = (g′(t, λ)− ξ)dt.

• At the jump τC , we have dCDSτC = RCDS − g(τC , λ).4.

• After the jump characterized by t > τC , we have d(CDS)t = 0.

4This case is particularly important as the CDS strategy provides at the default time τC of size (1 −
RC)(V (τC , SτC )+− fCV A(τC , SτC , λ)) which provides a perfect hedge against the counterparty risk loss at τC .
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Let’s now illustrate the algorithm we just described with some numerical results.
For this, we will compute the tracking error of the strategy defined by the process :

et =

∫ t

0

(1−R)(Vs)+dHs − (CV A0 +

∫ t

0

ξ1sdCDSs) ∀t ∈ [0, T ]. (7.15)

• A positive value of eT will correspond to a loss for the associated contract

• We will assume a rebalancing portfolio twice a week for the numerical result.

We will consider 2 cases of hedging ξ1 which are :

• ξ1 = 0 which means no hedging of CCR.

• ξ1t = ξ1t
∗ which is the optimal hedging strategy derived previously.

To check the accuracy of the optimal hedging strategy, we will calculate on the event {τC < T}
the mean of the error defined as EQ[e2T ] as it will be the indicator of the hedging. We expect of
course that this value will be the lowest for the dynamic mean-variance minimizing strategy in
comparison with the others as it should be concentrated around zero with a small mass in the
tails of the distribution.
We give in the table below the following parameters we used for the numerical experiments
where N stands for the number of timesteps and M the number of Monte-Carlo samples.

Table 7.1: Parameters used in the numerical experiments for the Mean Variance Minimizing
strategy in the B − S model

Parameters S0 K r T λ ξ RC RCDS N M
Value 100 100 0.0 1 0.5 0.5 0 1 52 2000

We consider also 2 cases for the value of σ :

• Case 1 when σ is supposed to be 0.2 considering a stressed market.

• Case 2 when σ is supposed to be 0.1 in an unstressed market.

Application to an european call option:

We compute the optimal strategy according to (7.14) with ϕ(ST ) = (ST −K)+ :

Figure 7.1: Comparison of 2 hedging strategies in order to hedge the CCR on a call option
with the Mean Variance Minimizing framework in Case 1
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Figure 7.2: Comparison of 2 hedging strategies in order to hedge the CCR on a call option
with the Mean Variance Minimizing framework in Case 2

bWe also provide the study of the tracking error eT 5 :

Table 7.2: Norm 2 of eT in case of an european call option in the B − S model

No Hedging Dynamic Hedging
E[(eT )2] in Case 1 88.13 5.04
E[(eT )2] in Case 2 20.18 1.19

Application to a european put option :

We compute the optimal strategy according to (7.14) with ϕ(ST ) = (K − ST )
+

Figure 7.3: Comparison of 2 hedging strategies in order to hedge the CCR on a put option
with the Mean Variance Minimizing framework in Case 1

Figure 7.4: Comparison of 2 hedging strategies in order to hedge the CCR on a put option
with the Mean Variance Minimizing framework in Case 2

5In the Annex E, similar results are given in the case of a Heston model for the underlying
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Table 7.3: Norm 2 of eT in case of an european put option in the B − S model

No Hedging Dynamic Hedging
E[(eT )2] in Case 1 73.25 4.07
E[(eT )2] in Case 2 19.42 1.03

Application to a forward contract :

In this case where the payoff is given by ϕ(ST ) = (ST − K), we need to calculate the fCV A

all paths long as we don’t have a simplification like for the european case. We give below the
numerical results obtained while computing CV A of the forward following equation (2.9).

Figure 7.5: Comparison of 2 hedging strategies in order to hedge the CCR on a forward contract
with the Mean Variance Minimizing framework in Case 1

Figure 7.6: Comparison of 2 hedging strategies in order to hedge the CCR on a forward contract
witwith the Mean Variance Minimizing framework in Case 2

Table 7.4: Norm 2 of eT in case of a forward contract in the B − S model

No Hedging Dynamic Hedging
E[(eT )2] in Case 1 72.45 3.48
E[(eT )2] in Case 2 20.75 0.89

• We show the overall performance of the dynamic hedging strategy against the no hedging
strategy on the 3 different examples we provided. Losses in the extreme tails are particu-
larly important in the case of the no hedging strategy whereas they are very measured in
the case of dynamic hedging. Moreover, as expected when the market is more stressed ,
the tracking error eT is more volatile but the dynamic hedging still provides good results.
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7.2.3 An application to the CCR in the reinsurance market

We will now considerer the case of the hedging of the CCR in the reinsurance market. First,
we need to introduce the model we will considerer. For this, we will follow the approach from
[25] by referring to their notations.
Let’s considerer an insurance company, labelled by I and an reinsurer labelled by R who enters
in a reinsurance contract with a maturity denoted by T . We will consider that the losses in the
insurance portfolio which will be the underlying of the reinsurance contract are of the form :

Lt =
∑Nt

i=1 Zi t ≥ 0.

with :

• A counting process N such as Nt =
∑+∞

n=1 1Tn≤t with (Tn)n∈N G-stopping times represent-
ing the arrival time of claims.

• (Zn)n∈N strictly positive random variables representing the claim sizes and are GTn mea-
surable.

We will assume that the payment is of the form ϕ(LT ) for a specified ϕ assumed to be an
increasing, lipschitz and continuous function. For the form of ϕ, it can cover various reinsurance
contracts such as :

• A stop loss SL contract with priority m and upper limit M such as the payoff becomes
ϕ(LSL

T ) = min{M, (LSL
T −m)+}.

• An excess-of-loss named EL with retention level m and upper limit M such as if we note
LEL
t =

∑
Tn≤t,Zn>M Zn −M , the payoff becomes ϕ(LEL

T ) = min{M,LEL
T }.

The model construction

We fix a filtered probability space (Ω,G,Q). We now consider W = (Wt)t≥0 a two-dimensional
brownian motion (W 1

t ,W
2
t )t≥0, η = (ηt)t≥0 a poisson process with intensity 1 independant of

W and Zn i.i.d random variables with distribution given by ν 6, also independant from W and
η. We now consider the following process ML = (ML

t )t≥0 defined as ML
t =

∑ηt
i=1 Zi which

represents a compound Poisson process. We will assume that the process Nt which represents
the claim arrival is given by an intensity cadlag loss process G-adapted λL = (λLt )t≥0. We will
finally assume that the process H admits a default intensity λR = (λRt )t≥0.
We now define the process Y = (Yt)t≥0 as the unique solution of the following SDE 7 8:

dYt = bY (Yt)dt+ σY (dt)(ρdW 1
t +

√
1− ρ2dW 2

t ), Y0 = y0 ∈ R+
∗ .

We assume as usually that there is a random variable ϕ ∼ E(1) G-measurable independant with
W and ML and we define τ as :

τ = inf{t ≥ 0 :

∫ t

0

λRs ds ≥ ϕ}. (7.16)

By defining τ like this, we already saw that τ is doubly stochastic with hazard rate the process
(λR(Yt))t≥0

6supposed to be absolutely continuous with respect to Lebesgue measure.
7Assuming that bY and σY verify classical hypothesis ensuring existence and unicity.
8The parameter ρ will represent the impact of the Wrong Way Risk.
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We can now define the process (Ht = 1τ≥t)t≥0 and we introduce the process X = (Xt)t≥0 as
the unique solution of the following SDE 9 :

dXt = γX(Xt−)dHt + bX(Xt)dt+ σX(Xt)dW
1
t , X0 = x0 ∈ R. (7.17)

We will now assume that λL and λR are of the forms λLt = λL(Xt) and λRt = λR(Yt). To define
the loss process, we now introduce the process θ = (θt)t≥0 defined as θt =

∫ t

0
λL(Xs−)ds such

that we have :

Ñt = ηθt , t ≥ 0.

Lt =ML
θt =

Nt∑
i=1

Zi, t ≥ 0.

From now, we can define the filtration G = (Gt)t≤0 defined as :

Gt = FW
t ∨ FL

t ∨Ht, t ≥ 0. (7.18)

where FW
t is the filtration generated by W , FL

t by L and Ht by H. Under this setting, we
have Zn which are GTn-measurable random variables and τ is a random time with respect to G.
In [25], they introduce the so called Contagion Free Market which will be used in the
computation of the optimal hedging strategy. For this, let’s define the process X̃ = (X̃t)t≥0 the
unique solution to the following SDE :

dX̃t = bX(X̃t)dt+ σX(X̃t)dW
1
t , X̃0 = x0 ∈ R.

From the definition of the process, we see that X̃ has the same dynamics with X expect from
the jump at τ . As previously, the define the analogue process θ̃ to θ such that θ̃t =

∫ t

0
λL(X̃s)ds

such that we can define the Cox Process Ñ = (Ñt)t≥0 and the loss process L̃ = (L̃t)t≥0 and as
follows :

Ñt = ηθ̃t t ≥ 0.

L̃t =
Ñt∑
i=1

Zi t ≥ 0.

After having defined the model, we can now focus on deriving the equations associated with
the quantities of interest. We will assume a constant risk-free interest rate and we can define
therefore the price of the reinsurance contract and the associated CV A as follows under the Q
risk neutral pricing measure.

Vt = EQ[e−r(T−t)ϕ(LT )|Gt].
CV At = (1−RC)EQ[1t<τ≤T e

−r(τ−t)(Vτ )
+|Gt]. (7.19)

For the following, we will resume the main results from [25] where proofs can be found in their
article. 10

9The function γX(X−
t ) represents the pricing contagion which aims to represent the fact that if R defaults

than the supply for the reinsurance market will reduce by making the price of the reinsurance contract going
up

10The proof of each result can be found in their article if the reader wants more details. We just give here
the main quantities which are necessary to derive the optimal hedging strategy.
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Proposition 7.3. There exists a unique bounded classical solution v (i.e. continuous, C1 in t
and C2 in x) of the following backward PIDE 11

∂v

∂t
(t, l, x) + L(L̃,X̃)v(t, l, x) = rv(t, l, x), (t, l, x) ∈ [0, T )× R+ × R, (7.20)

with the generator of the diffusion given by :

L(L̃,X̃)f(t, l, x) =
∂f

∂x
(t, l, x)bX(x) +

1

2

∂2f

∂x2
(t, l, x)(σX(x))2 (7.21)

+

∫
R+

(
f(t, l + z, x)− f(t, l, x)

)
λL(x)ν(dz). (7.22)

with terminal condition v(T, l, x) = ϕ(l). Moreover, it holds for τ ≤ T that

Vτ = v
(
τ, L̃τ , X̃τ + γX(X̃τ )

)
.

Proposition 7.4. The value of the CVA is given by :

CV At = (1−RC)(1−Ht)f
CV A(t, Lt, Xt, Yt). (7.23)

where fCV A : [0, T ]× R+ × R× R→ R+ can be written as follows :

fCV A(t, Lt, Xt, Yt) = EQ[

∫ T

t

v(s, L̃s, (X̃s + γX(X̃s))λ
Y (Ys)e

−
∫ s
t (r+λY (Yu))duds|Ft] (7.24)

Similarly to the previous section, we will assume the same form of hedging strategy so we
have the following :

Proposition 7.5. The process D is given by :

Dt = (1−Ht)g(t, Yt). (7.25)

where g : [0, T ]× R→ R can be written as follows :

g(t, Yt) = EQ[

∫ T

t

e−
∫ u
t r+λY (Ys)ds(RCDSλY (Yu)− ξ)du|Ft]. (7.26)

Theorem 7.1. The Q-mean-variance minimizing strategy is characterized by the initial value
V0(ξ

∗) = CV A0 and by the CDS position ξ1,∗t = d⟨MCL,CDS⟩
d⟨S⟩ for every 0 ≤ t ≤ T , where

d⟨M,S⟩t
dt

=(1−R)e−2rt(1−Ht−)

{
ρσX(Xt−)σ

Y (Yt)
∂fCV A

∂x
(t, Lt−, Xt−, Yt)

∂g

∂y
(t, Yt) (7.27)

+(σY (Yt))
2 ∂f

CV A

∂y
(t, Lt−, Xt−, Yt)

∂g

∂y
(t, Yt)

+λR(Yt)
(
RCDS−g(t, Yt)

)(
vϕ(t, Lt−, Xt−+γ

X(Xt−))− fCV A(t, Lt−, Xt−, Yt)
)}
.

and

d⟨CDS⟩t
dt

= e−2rt(1−Ht−)

{
λR(Yt)(R

CDS − g(t, Yt))2 + (σY (Yt))
2

(
∂g

∂y
(t, Yt)

)2}
. (7.28)

Proof. The proof is very similar to the ones we did in the previou section leading to similar
computations except that as the process X can jump, we have to take care of this.

11PIDE refers to Partial Integro Differential Equation which is a PDE where it can involve also the integral
of a function.
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Some numerical results :

We first for our numerical results the case of a stop loss contract with the following payoff
ϕ(LT ) = (LT −K)+ with K = 90 and T = 1.
For the calculation of CV A0 , we will consider the following model.

dYt = (0.05− Yt)dt+ 0.1
√
Yt(ρdW

1
t +

√
1− ρ2dW 2

t , Y0 = 0.05.

dXt = γXt−dHt + κ(100−Xt)dt+ σXtdW
1
t , X0 = 100.

As we mentioned, we have 2 possible representations of the CV A with equation (7.19) and
(7.23) but as we know how to simulate τ here, we decided to use the equation (7.19).

• Claim sizes are Γ(1, 1) distributed. 12

• κ = 0.5 and σ = 0.2.

Figure 7.7: Evolution of CV A0 as a function of ρ for different values of γ ( left) and as a
function of γ for different values of ρ (right)

Some remarks on the results :

• The parameter ρ which captures the wrong way risk in our model shows that indeed where
ρ increases, CV A0 also increases from figure 7.7 but the impact of the price contagion
looks way more pronounced in CV A0 than the wrong way risk and it looks to be an
important feature in the modelling of the reinsurance counterparty credit risk.

12The density function of X ∼ Γ(α, β) is given by fX(x) = xα−1 βαe−βx

Γ(α) 1x≥0 where Γ is the Gamma function
of Euler.
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Comparison of hedging strategies :

For the hedging strategies, we will like in the previous section suppose that the loss intensity
is such that we have Yt = Y0 ∀t ∈ [0, T ] as it doesn’t require the computations of derivatives
of fCV A or g.
We therefore have a simplified expression for fCV A and g which are given by :

fCV A(t, Lt, Xt, λ) = EQ[

∫ T

t

v(s, Ls, (1 + γ)X̃s)λe
−

∫ s
t (r+λ)duds|Ft] = v(t, Lt, (1 + γ)X̃t)(1− e−λ(T−t)).

g(t, λ) = EQ[

∫ T

t

e−
∫ u
t (r+λ)ds(RCDSλ− ξ)du|Ft] = RCDS(1− e−λ(T−t)) +

ξ

λ
(e−λ(T−t) − 1).

From this simplified formula, it follows that the optimal strategy ξ1,∗ is given for 0 ≤ t ≤ T
by :

ξ1,∗t = (1−Ht)
(1−RC)(v(t, Lt, (1 + γ)X̃t)e

−λ(T−t)

RCDS − g(t, λ)
. (7.29)

We will now give some numerical results by calculating like in the previous subsection the
tracking error eT for one case with no hedging of the CV A and the other with the formula
(7.29).
We give in the following table the parameters we used in the different cases. 13

Table 7.5: Parameter used in the numerical experiments in the Mean Variance Minimizing
strategy for the stop loss contract

Parameters X0 L0 λ ρ ξ α β γ RC RCDS N M
Case 1 100 0 0.2 0 0.2 1 1 0 0 1 52 2000
Case 2 10 0 0.2 0 0.2 10 1 0 0 1 52 2000

• The first case where we choose X0 = 100 and α = 1 will correspond to a case where we
suppose that the insurer suffer frequent small losses whereas the second case X0 = 10
and α = 10 correspond to a case where the insurer suffers infrequent but large losses.
Therefore, we expect that we will have a more volatile tracking error eT in the second
case with a dynamic hedging strategy performing better in the first case.

13We took the following parameters similarly to [25].
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Figure 7.8: Comparison of 2 hedging strategies in order to hedge the CCR on a stop loss
contract with the Mean Variance Minimizing framework in Case 1

Figure 7.9: Comparison of 2 hedging strategies in order to hedge the CCR on a stop loss
contract with the Mean Variance Minimizing framework in Case 2

Table 7.6: Norm 2 of eT in case of a stop-loss contract

No Hedging Dynamic Hedging
E[(eT )2] in Case 1 283.65 2.90
E[(eT )2] in Case 2 50.84 0.52

Some remarks on the results :

• We observe that the dynamic hedging strategy performs well better than the no hedging
strategy with the norm 2 of the tracking error being way less important in the dynamic
hedging strategy.

• Moreover, we observe that in the case of infrequent but large losses which correspond to
the case 1, the losses that the insurer can suffer are way more higher in the case of frequent
but small losses. Moreover, we see that the dynamic hedging performs worse than in the
case 1 which is also intuitive as the potential losses are largest. Anyways in this case, we
clearly see that not performing an hedging strategy can lead to disastrous losses whereas
with performing the dynamic strategy, we can clearly have a better protection against
the potential default of the reinsurer.
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7.3 Introduction to a static hedging approach for the CCR
in the reinsurance market

In this subsection, we will quickly introduce the static approach introduced in [28] by Chi, Hu
and Huang in their article Optimal risk management with reinsurance and its counterparty risk
hedging where they propose an optimal risk management point of view for an insurer who has
to deal with the potential counterparty risk of a reinsurer and who can manage this with an
hedging instrument assumed to be default-free like we did in the previous section. The purpose
of the insurer is to solve his optimization problem by maximizing his expected utility wealth
under the potential default of the reinsurer.

7.3.1 Mathematical framework

Let’s consider an insurer who has an initial wealth w and who faces a random variable risk X
in a fixed time period assumed to be bounded on a probability space (Ω,F ,P).
Let’s consider that the insurer can reduce his risk exposure by ceding an amount r(X) which
is assumed to be such that 0 ≤ r(X) ≤ X a.s14. Moreover, they add the following condition :
r(X) and X − r(X) are both increasing random variables.

• The condition 0 ≤ r(X) ≤ X a.s is called Imdemnity Principle.

• The condition r(X) and X − r(X) both increasing functions is called Non Sabotage
condition to reduce the ex-post moral hazard on the insurer who can misreport the true
value of the sinister.

Theses 2 conditions allow us to define R = {r : r(0) = 0 and 0 ≤ r′(X) ≤ 1 a.s}.
We now consider the potential default of the reinsurance denote by D such as 1D is the indicator
variable representing the default. We also assume that in case of a default the LGD is given
by 1−RC = τ .
The reinsurance premium is then given by the expected value principle for fair pricing :

πR(r) = (1 + ρR)E[(1− τ1D)r(X)]. (7.30)

where ρR is the classic safety chargement.
If we make the assumption that the default D is independant from the risk X, and assuming
that the default happens with a probability p, we therefore have :

πR(r) = (1 + ρR)(1− τp)E[r(X)]. (7.31)

We consider that to hedge the potential default of the reinsurer, we can use a financial hedging
instrument h(X) with payoff h(X)1D with h assumed to be a positive function.
The fair value of this contract is therefore given by :

πH(h) = 1 + ρHE[h(X)1D] = (1 + ρH)pE[h(X)]. (7.32)

where ρH is a safety chargement.
We can therefore write the final wealth Wof the insurer at the end of the period :

Wr,h(X,D) = w −X + (1− τ1D)r(X) + h(X)1D − πR(r)− πH(h). (7.33)

14as means almost surely meaning that P(0 ≤ r(X) ≤ X) = 1.
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Under the expected utility theory, we assume that the insurer is risk averse and is charac-
terized by an utility function u who verifies the classic hypothesis. 15

Therefore the expected utility of the insurer’s final wealth is given by :

L(r, h) = E[u(Wr,h(X,D))] = pE[u(W d
r,h(X)] + (1− p)E[u(W f

r,h(X)]. (7.34)

with :

W d
r,h(X) = w −X + (1− τ)r(X) + h(X)− πR(r)− πH(h).

W f
r,h(X) = w −X + r(X)− πR(r)− πH(h).

The objective for the insurer is to seek an optimal policy (r, h) which will maximize his expected
utility. Therefore, we seek to solve the following problem :

maxr∈R,h≥0L(r, h). (7.35)

Optimal Forms of Reinsurance and Hedging :

We will now give optimal forms of r and h that solve the problem (7.35). For this, we will
mainly refer to the article [28].

Proposition 7.6. For τ ∈]0, 1[, an optimal solution (r∗, h∗) to (7.35) is given by :

r∗(x) = (x− l)+ − (x−m)+ + (x− t)+.
h∗(x) = (x− c)+ − (1− τ)(x− t)+.

where l,m, c, t are parameters such as 0 ≤ l ≤ m ≤ c ≤ t ≤M with M the supremum of X.
If τ = 1, an optimal solution is given by :

r∗(x) = (x− a)+.
h∗(x) = (x− b)+.

where a, b ∈ [0,M ].

Proof. The proof can be found in [28] and they show the existence and unicity of the opti-
mal solution by simplifying the infinite dimensional problem (7.35) into a problem with finite
decision variables.

They also shows some interesting forms of reinsurance and hedging in multiple cases which
we will try to summarize here :

• The optimal reinsurance/hedging form in the case of ρR = ρH = 0 is given by :

(r∗(x), h∗(x)) = (x, τx).

• In the case of u′(w−M)
E[u′(w−X)]

≤ 1 + ρR ∧ ρH , the optimal form is given by :

(r∗(x), h∗(x)) = (0, 0). (7.36)

15u is assumed to be concave with limx→+∞u′(x) = 0
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Theses 2 cases are already interesting as they help to show some limit cases. Indeed, the
first case says that if both reinsurance and hedging contracts are fair priced, then it’s optimal
to cede all the risk to the insurance and to hedge all the defaultable risk. This result is quite
intuitive as it will lead to a fair value of the wealth of the insurer to be equal to w−πR−πH in
both cases no matter default happened or not. The second case is also informative in the sense
that it says if both reinsurance contract and hedging contract are too costly for the insurer,
then it’s preferable to not buy a reinsurance contract and so on an hedging contract.
They consider also non-trivial cases where we suppose the following assumptions :

1 < (1 + ρR)(1 + ρH).

(1 + ρR ∧ ρH) <
u′(w −M)

E[u′(w −X)]
. (7.37)

S(X) = [0,M ].

By considering this, we dont’t take in consideration the both previous forms obtained in simple
cases. and considering that S(X) = [0,M ] allows for a potential jump at X = 0.

Proposition 7.7. Under Assumptions 7.37, we have :
(i) If ρR > ρH , then : {

r∗(x) = (x− t)+.
h ∗ (x) = (x− c)+ − (1− τ)(x− t)+. (7.38)

where 0 < c < t ≤M

(ii) If ρR < ρH , then : {
r∗(x) = (x− l)+.
h∗(x) = τ(x− t)+. (7.39)

where 0 ≤ l < t ≤M

(iii) If ρR = ρH , then : {
r∗(x) = (x− d∗)+.
h∗(x) = τ(x− d∗)+. (7.40)

where d∗ = sup{d ∈ [0,M ] : E[u′(w−X∧d−(1+ρR)E[(X−d)+])]
u′(w−d−(1+ρR)E[(X−d)+])

≥ 1
1+ρR
}.

Some remarks on the model

• We assume that X is a bounded random variable but of course, it could not be the case
and we could potentially have to deal with a potential ruin of the insurer which can also
be taking account in the modelisation.

• An interesting point is the form of optimal contracts. We can see that optimal reinsurance
and hedging contracts are function of stop-loss contracts which shows that these type of
contracts are particularly well suited in the design of an optimal risk management policy.
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7.3.2 Some numerical results

To illustrate the previous algorithm, we will consider the following set of characteristics :

• The risk function X assumed to have a density function fX(x) = λe−λx

1−e−λM 10≤x≤M .

• Utility Function : uα(w) = −e−αw.

• ρR = ρH = 0.1, λ = 0.6, p = 0.2, τ = 0.6, M = 20 and w =M + 10 = 30.

According to Proposition 7.7, we need to calculate :

d∗ = sup{d ∈ [0,M ] :
E[u′(w −X ∧ d− (1 + ρR)E[(X − d)+])]

u′(w − d− (1 + ρR)E[(X − d)+])
≥ 1

1 + ρR
}. (7.41)

Lemma 7.1. Assuming X has a density function fX(x) = λe−λx

1−e−λM 10≤x≤M , Then, ∀ 0 < d < M ,
we have :

E[eα(X∧d)] =

∫ d

0

eαxfX(x)dx+

∫ M

d

eαdfX(x)dx,

=
λ

1− e−λM

∫ d

0

e(α−λ)xdx+

∫ M

d

eαde−λxdx,

=
λ

1− e−λM
(

1

λ+ α
(1− e(α−λ)d) +

eαd

λ
(e−λd − e−λM)),

=
λ

(λ+ α)(1− e−λM)
(1− e(α−λ)d) +

eαd

1− e−λM
(e−λd − e−λM). (7.42)

As u′
α(w) = αe−αw, the left term in (7.43) reduces to the following computation :

E[u′α(X ∧ d)]
u′α(d)

= e−αdE[eα(X∧d)].

According to the Lemma 7.1, we therefore have :

E[u′α(X ∧ d)]
u′α(d)

=
1

1− e−λM
{ λ

λ+ α
(e−αd − e−λd) + e−λd − e−λM},

=
1

1− e−λM
{( λ

λ+ α
e−αd +

α

λ+ α
e−λd − e−λM}.

Finally we see that d∗ is defined as :

sup{d ∈ [0,M ] :
λ

λ+ α
e−αd +

α

λ+ α
e−λd ≥ 1 + e−λMρR

1 + ρR
}. (7.43)

From equation (7.43), we can now derive the optimal level d∗ for the optimal reinsurance and
hedging contract.16

16Founding d∗ has been performed using the classic Newton-Raphson algorithm to find the roots of a smooth
function f (See https://personal.math.ubc.ca/~anstee/math104/newtonmethod.pdf for an introduction to
the algorithm).
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7.3 Introduction to a static hedging approach for the CCR in the reinsurance market

Some numerical results

We will provide the evolution of d∗ with with respect to both α and ρR to see how they affect
the optimal reinsurance and hedging contracts. 17

Figure 7.10: Evolution of d∗ as a function of the aversion parameter α with ρR = ρH = 0.1

Figure 7.11: Evolution of d∗ as a function of the aversion parameter α with ρR = ρH = 0.2

17Other numerical results are presented in the article in less trivial cases but involve more numerical compu-
tations to find the optimal levels of reinsurance and hedging.
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Figure 7.12: Evolution of d∗ as a function of the aversion parameter ρR with α = 0.1

Figure 7.13: Evolution of d∗ as a function of the aversion parameter ρR with α = 0.2

Some remarks on the results :

• The optimal type of reinsurance contracts according to the algorithm are stop loss con-
tracts which is similar to Arrow’s result from 1963 with in this case the hedging instrument
where the insurer covers the tailed risk for any level of τ .

• We see that d∗ is decreasing with the aversion parameter α which is intuitive in the sense
that if an insurer is really risk averse, he wants to transfer the most risk as possible to
the reinsurer which will lead to a lower level of d∗.

• We can see that when both the reinsurance and the hedging contracts become expensive
with an higher ρR, d∗ increases which can be understood as trying to reduce the actuarial
prime by setting the level of d∗ higher for both contracts.

• In our special case of utility function uα, we see that d∗ is not a function of the initial
wealth which is a nontrivial term to analyse and if we choose another type of utility
function such as u(w) =

√
w, we would see an other dependency of d∗ with respect to w.
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Globals remarks on the chapter :

• Through this chapter, we talked about efficient hedgings methods of the counterparty
exposure. We first introduce a dynamic hedging strategy with a possible investment
in a CDS called Mean-Variance Hedging strategy. We illustrate it through numerical
examples on the financial market by deriving analytic formulas for the self-financing
portfolio. We showed how it globally reduces the error and why it was important to cover
the counterparty exposure by showing the loss we could face in case of no hedging. After
talking about financial market, we talked about the reinsurance market by dealing with
the potential default of a reinsurance involved in a stop loss contract. For this, we used
the model introduced by Ceci, Colanery, Frey and Köck in [25] where they propose a
stochastic model of the loss of an insurer and where they also derive the CV A0 on the
stop loss contract. They also propose the same investment on a CDS written on the
potential defaut of the reinsurer and how a dynamic hedging could be performed in order
to reduce drastically the counterparty exposure. The numerical results we obtained are
similar to them showing that it could indeed be used by the insurance market to better
cover their exposition to reinsurance CCR.

• Finally, in this chapter, we also analyze a static hedging strategy based on the article by
Chi,Hu and Huang [28] where they analyze optimal risk management with reinsurance in
case of counterparty risk. To perform this, they consider their problem as an optimization
problem where the insurer tries to maximise his utility function through the choice of the
reinsurance and hedging contracts. They show that the solutions will depend of some
model parameters but they rely on stop loss contracts for the reinsurance contracts and
similarly for the hedging contracts. We illustrate numerically one optimal reinsurance
and hedging contracts where the loss of the insurer is given by a truncated exponential
random variable and with a CARA utility function. In this sample case, we could derive
optimal reinsurance and hedging contracts and perform some analysis on the impact of
each parameter of the model on the optimal solutions.

• We note that the hedging strategies we derived in this chapter are highly dependent of
the choice of the model we are dealing with and could clearly be improved by potentially
adding transaction costs and rebalancing costs in the dynamic hedging setup for example
but they provide a mathematical overview of the current analysis of the counterparty
exposure which exists in the litterature. We also observe that other strategies in order to
mitigate the CCR also exist like Collateralization or Netting but the litterature is really
scarce on these concepts.
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This dissertation provided an overview of numerical methods, transitioning from classical
approaches to recent supervised learning methods, addressing the challenges associated with
the computation of XV As.

Firstly, a specific mathematical framework, inspired by academic literature, was proposed
for the calculation of various XV As and formed the foundation of this dissertation. From
this framework, numerous illustrations were provided for the calculation of counterparty risk
across different types of financial products, including european equity options and interest rate
swaps under the G2 + + and Hull & White models, as well as more exotic products such as
bermudan options, evaluated via a put and a swaption using the Least Square Monte-Carlo
method. This dissertation also emphasized the significant impact of Wrong Way Risk in the
valuation of XV As by presenting two modelling approaches based on research articles. One of
these approaches incorporates a change of measure, allowing the integration of WWR into the
pricing of CV A under the Wrong Way Measure.

Secondly, this dissertation demonstrated the relevance of supervised learning algorithms for
the calculation of XV As, particularly in overcoming the classical issues of the nested Monte-
Carlo approach. A detailed study was conducted on the contribution of Gaussian Process
Regression, highlighting both the strengths and limitations of the algorithm. It was shown how
combining Gaussian Process Regression with classical Monte-Carlo methods could efficiently
learn the expected exposure profile of European derivatives or interest rate swap portfolios,
thereby avoiding the need for nested Monte-Carlo procedures. An important part of this dis-
sertation was also devoted to the study of fully connected deep neural networks and their
usefulness in the calculation of XV As. Two algorithms were studied : one which was based on
the PDE representation of XV As called Deep XVA Solver where we computed the expected
profile of a very high dimensional european derivative which showed that it can overcome the
curse of dimensionality and the other based on their probabilistic representation called Deep
Conditional Expectation Solver where an efficient calculation of MVA0 was computed avoiding
also the nested Monte-Carlo procedure.

Finally, this dissertation focused on the hedging aspects of counterparty risk. A dynamic
hedging approach was studied using quadratic hedging methods, with an investment in a bench-
mark hedging instrument for counterparty risk : Credit Default Swaps (CDS). An application
to reinsurance counterparty risk in a stop-loss contract was presented, where we derived an
analytical formula for the optimal investment strategy in the CDS to minimize the tracking
error. A static approach, based on expected utility theory, was also proposed. In this approach,
an insurer seeks to maximize the expected utility of its wealth by subscribing to a reinsurance
contract and a hedging instrument to guard against the reinsurer’s potential default. The
insurer then determines the optimal contracts to solve his optimization problem.

In conclusion, this dissertation explored various quantitative aspects related to the man-
agement of XV As, which have become a critical topic for banks and insurers since the 2008
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financial crisis. The work highlighted the computational challenges of pricing XV As and pro-
posed new efficient numerical methods to address these challenges. Finally, it introduced key
concepts in counterparty risk hedging, using both dynamic and static approaches.

Potential further research

• The financial industry also seeks to calculate in addition to the average exposure profile
EE the exposure profile at a given percentile α ∈ [0.1] given by:

PFEα
t = inf{y : P ((Vt)

+ ≤ y) ≤ α}

This complementary measure echoes the definition of Value-at-Risk and recently super-
vised learning methods have emerged for the calculation of these risk measures based on
a dual representation of the Value-at-Risk and Expected Shortfall as minimization prob-
lems as introduced in the article [29] Learning Value-at-Risk and Expected Shortfall from
Barrera, Crépey, Gobet, Nguyen and Saadeddine.

• Deep neural networks are currently studied for the valuation of life insurance options
indexed to stocks, in particular as introduced in the article [30] Pricing equity-linked
life insurance contracts with multiple risk factors by neural networks from Barigou and
Delong.

• Supervised learning algorithms are also studied for the valuation of high-dimensional
Bermudan options as introduced in the article [31] Deep Optimal Stopping from Becker,
Cheridito and Jentzen where the optimal exercise time is learned on a sample of data as
well as the calculation of exposure profiles associated with these options as introduced in
the article [32] A deep learning approach for computations of exposure profiles for high-
dimensional Bermudan options from Andersson and Oosterlee.

• Finally, the academic literature is also focusing on neural networks for hedging objectives
as introduced in the article [33] Deep Quadratic Hedging from Gnoatto, Picarelli and
Lavagnini where quadratic hedging strategies are learned based on the Deep BSDE Solver.
Recently, methods based on reinforcement learning have emerged as introduced in the
article [34] Reinforcement Learning for CVA hedging from Alonso and Zhdankin.
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Glossary

Glossary

XVA X Valuation Adjustment

CVA Credit Valuation Adjustment

DVA Debt Valuation Adjustment

BCVA Bilateral Credit Valuation Adjustment

FVA Funding Valuation Adjustment

FCA Funding Cost Adjustment

FBA Funding Benefit Adjustment

KVA Capital Valuation Adjustment

MVA Margin Valuation Adjustment

IM Initial Margin

DIM Dynamic Initial Margin

ISDA International Swaps and Derivatives Association

SIMM Standard Initial Margin Model

EC Economic Capital

MPOR Margin Period of Risk

LGD Loss Given Default

EAD Exposure at Default

PD Probability of Default

CCR Counterparty Credit Risk

EE Expected Exposure

PE Positive Exposure

NE Negative Exposure

EPE Expected Positive Exposure

ENE Expected Negative Exposure

PFE Potential Future Exposure
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Glossary

ML Machine Learning

DL Deep Learning

FFNN Feed Forward Neural Networks

ANN Artificial Neural Network

GPR Gaussian Processes Regression

PDE Partial Differential Equation

PIDE Partial Integro-Differential Equation

SDE Stochastic Differential Equation

BSDE Backward Stochastic Differential Equation

FBSDE Forward Backward Stochastic Differential Equation

CARA Constant Absolute Risk Aversion

CDS Credit Default Swap

WWR Wrong Way Risk

IRS Interest Rate Swap

MC Monte-Carlo

LSMC Least Square Monte-Carlo

GMMB Guarantee Maximum Maturity Benefit

B-S Black-Scholes

GBM Geometric Brownian Motion

CDF Cumulative Distribution Function

MSE Mean Squared Error

MAE Mean Absolute Error

VaR Value at Risk

ES Expected Shortfall
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Annexes

A Key propositions used in this dissertation
Proposition A.1. Unidimensionnal Feymann-Kac Formula

Let’s consider a probability space (Ω,F ,Q) supported by a one-dimensional brownian motion
WQ = (WQ

t )t≥0 and the filtration F = (Ft)t≥0 generated by the brownian motion. We consider
X = (Xt)t∈[0,T ] with T > 0 the unique 18 process valued in R solution of the following SDE :

dXt = µ(t,Xt)dt+ σ(t,Xt)dW
Q
t .

Let’s consider now the following partial differential equation of which u is solution :

∂tu(t, x) + µ(t, x)∂xu(t, x) +
1

2
σ2(t, x)∂x2u(t, x)− r(t, x)u(t, x) + f(t, x) = 0, ∀(t, x) ∈ [0, T [×R.

u(T, x) = g(x), ∀x ∈ R.

Then, u(t, x) can be rewritten as the following :

u(t, x) = EQ[e−
∫ T
t r(s,Xs)dsg(XT ) +

∫ T

t

e−
∫ u
t r(s,Xs)dsf(u,Xu)du|Xt = x]. (A.1)

Proof. We will just give the proof of the form of the solution u assuming existence has been
done. Let’s consider the following process Y = (Ys)s∈[t,T ] defined as :

Ys = e−
∫ s
t r(u,Xu)duu(s,Xs) +

∫ s

t

e−
∫ u
t r(l,Xl)dlf(u,Xu)du.

By differentiating dYs, we therefore have :

dYs = e−
∫ s
t r(u,Xu)du

(
− r(s,Xs)u(s,Xs)ds+ du(s,Xs) + f(s,Xs)ds

)
. (A.2)

By applying Itô formula to u as it is assumed to be C1,2, we can therefore write :

du(s,Xs) =
(
∂su(s,Xs) + µ(s,Xs)∂xu(s,Xs) +

1

2
σ2(s,Xs)∂x2u(s,Xs)

)
ds+ σ(s,Xs)∂xu(s,Xs)dW

Q
s .

By now using the PDE of which u is solution, we can therefore write (A.2) as :

dYs = e−
∫ s
t r(u,Xu)duσ(s,Xs)∂xu(s,Xs)dW

Q
s . (A.3)

By integrating and using the fact according to (A.3), the process Y defines a local martingale
(which will be assumed to be a true martingale), we can write :

EQ[YT |Xt = x] = EQ[Yt|Xt = x] = u(t, x).

Going back to the definition of YT , we recover the form of u(t, x) of the theorem.
18Assuming that µ and σ verify the classical assumptions ensuring existence and unicity.
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Proposition A.2. Bayes Lemma
Let’s consider (Γt)t∈[0,T ] a strictly positive martingale on a filtered probability space (Ω,F , (Ft)t∈[0,T ])

with a probability measure P on this probability space such that EP[.] denotes the expectation of
. under P and we assume that EP[Γt] = 1. Let’s now define the probability measure Q on (Ω,F)
such that we have :

Q(A) = EP[ΓT1A] ∀A ∈ F . (A.4)

Therefore, we have for X random variable such that EQ[|X|] < +∞ :

EQ[X|Ft] =
EP[XΓT |Ft]

EP[ΓT |Ft]
=

EP[XΓT |Ft]

Γt

∀t ∈ [0, T ]. (A.5)

Moreover, we can define the Radon-Nikodym process (Γt)t∈[0,T ]
19 such that we have for any

A ∈ Ft :
Q(A) = EP[ΓT1A] = EP[Γt1A]. (A.6)

Assuming now a process X = (Xt)t∈[0,T ] which is an (Ft)t∈[0,T ] adapted process, we can now
write:

EQ[Xt|Fs] =
EP[XtΓt|Fs]

Γs

∀s < t < T. (A.7)

Proof. First, it’s clear that Q defines a probability measure as P is assumed to be a probability
measure. Now let’s consider a set A ∈ Ft and X random variable such that EQ[|X|] < +∞.
Let’s show that :

EQ[1AX] = EQ[1A
EP[XΓT |Ft]

Γt

].

For this, let’s start from the term EQ[1A
EP [XΓT |Ft]

Γt
].

EQ[1A
EP[XΓT |Ft]

Γt

] = EP[1AΓT
EP[XΓT |Ft]

Γt

]

= EP[EP[1AΓT
EP[XΓT |Ft]

Γt

|Ft]]

= EP[[1A
EP[XΓT |Ft]

Γt

EP[ΓT |Ft]]

= EP[1AEP[XΓT |Ft]]

= EP[EP[1AXΓT |Ft]]

= EP[1AXΓT ]

= EQ[1AX].

The first and last lines come from the Radon Nikodym density between Q and P. The second
and sixth lines come from the tower rule property . The third and fifth lines come from the Ft-
measurability of 1A and EP[XΓT |Ft]. The fourth line come from the martingale property of the
process Γ which ends the proof of equation (A.5). The equation (A.6) comes from conditioning
on Ft and the proof of the equation (A.7) is the same as the one of equation (A.5).

19In the literature, we can see the notation dQ
dP |Ft

= Γt
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Proposition A.3. Girsanov Theorem
Let’s consider a filtered probability space (Ω,F , (Ft)t∈[0,T ],P). Let’s also consider a process

L = (Lt)t∈[0,T ] with T > 0 a local martingale with L0 = 0 such that the process E(L)t =

eLt− 1
2
⟨L,L⟩t is a true martingale (where ⟨., .⟩ denotes the quadratic variation of the process).

Let’s now define the probability measure Q such that ∀A ∈ Ft, we have :

Q(A) = EP[1AE(L)t]. (A.8)

Now, let’s consider (Wt)t∈[0,T ] a brownian motion under P, then the process W̃ = (W̃t)t∈[0,T ]

defined by :

W̃t = Wt − ⟨W,L⟩t. (A.9)

is a brownian motion under Q. More generally, if we consider a local martingale M = (Mt)t∈[0,T ]

under P, then the process M̃ = (M̃t)t∈[0,T ] defined by :

M̃t =Mt − ⟨M,L⟩t. (A.10)

is a local martingale under Q with the same quadratic variation as M .

Proof. For the case of a brownian motion , several proofs of this result exist in the litterature.
we will do a proof by using the following characterization of a brownian motion.

Lemma A.1. A continuous stochastic process W = (Wt)t≥0 such that W0 = 0 on a filtered
probability space (Ω,F , (Ft)t≥0,P) is a one dimensional Brownian motion if and only if :

• W is a martingale with respect to the filtration (Ft)t≥0.

• (W 2
t − t)t≥0 is a martingale with respect to the filtration (Ft)t≥0.

Proof. The proof of this lemma can be found in [35].

Now, let’s consider Wt a brownian motion under P and let’s define the process W̃t = Wt −
⟨W,L⟩t. Let’s show that W̃ = (W̃t)t≥0 is a brownian motion under Q which means that we
have to check according to the lemma (A.1) that W̃ and (W̃ 2

t − t)t≥0 are martingales under Q
with the filtration generated by W . For this , we need to show by using the Bayes Lemma and
noting the process Mt = E(L)t that ∀ 0 ≤ s < t

EQ[W̃t|Fs] =
EP[W̃tMt|Fs]

Ms

= W̃s. (A.11)

We see that we just need to show that the process W̃M is a martingale under P. Or, we have
that dMt =MtdLt, dW̃t = dWt−d⟨W,L⟩t d⟨W̃ ,M⟩t =Mtd⟨W,L⟩t. Therefore, by applying Itô
formula for a product, we have that :

d(W̃M)t = W̃tMtdLt +MtdW̃t + d⟨W̃ ,M⟩t = W̃tMtdLt +MtdWt.

Therefore the process W̃M is a true martingale as the sum of 2 martingales under P (assuming
L is a true martingale under P) which proves the equation (A.11). The proof of the martingale
property of (W̃ 2

t − t)t≥0 under Q is the same by considering the process ((W̃ 2
t − t)Mt)t≥0 and

showing this is a martingale under P by the same arguments. Therefore, the process W̃ is a
continuous process starting from 0 verifying the properties of the previous lemma so is a one
dimensional brownian motion under Q.
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Proposition A.4. Conditional Expectation Representation
Consider 2 random variables Y and X in a probability space (Ω,F ,P) such as E[Y |X] is in

L2(X). Then, E[Y |X] is the unique solution to the following optimization problem :

argminf∈L2(X)E[(Y − f(X))2].

Proof. To make a proof , we will need the following lemma :

Lemma A.2. Let H be a closed vector sub-space of L2 and X ∈L2.
Then, there exists an unique Z such that E[(X − Z)2] = inf{E[(X − Y )2 : Y ∈ H} and

∀Y ∈ H, we have E[XY ] = E[ZY ].

Proof. Let’s note by a = inf{E[(X−Y )2 : Y ∈ H}. Let’s denote by Y ′ and Z ′ ∈ L2. Therefore,
we have the median formula :

E[(Z ′ − Y ′)2] + E[(Z ′ + Y ′)2] = 2(E[Z ′2] + E[Y ′2]).

Let’s define (Xn)n∈N a sequence of H such that limn→+∞E[(X − Xn)
2] = a. Defining now

Z ′ = Xn −X and Y ′ = Xm −X, we then have by defining I = Xn+Xm

2
∈ H the following :

E[(Xn −Xm)
2] = 2E[(X −Xn)

2] + 2E[(X −Xm)
2]− 4E[(X − I)2]

By the definition of a, we see that (Xn)n∈N defines a Cauchy sequence in L2 which is a complete
space, then it means that (Xn)n∈N converges in L2, let’s say to XH . But as H is closed, we
have that XH ∈ H. Let’s consider Y ∈ H and the function t→ E[(X −XH + tY )2] which is a
polynomial function minimal for t = 0 with value a. Or, the derivative at t = 0 is also 0 and
equals E[(X −XH)Y ] = 0 which gives E[XY ] = E[XHY ].
Let’s proof the unicity now by considering another variable Z such that we have E[(X−Z)2] = a.
According to the equality, we have ∀Y ∈ H, E[(X − Z)Y ] = 0. Thefore, we can write :

E[(XH − Z)Y ] = E[(XH −X +X − Z)Y ]

= E[(XH −X)Y ] + E[(X − Z)Y ]

= 0.

By taking now Y = XH − Z ∈ H, we have E[(XH − Z)2] = 0 meaning that XH = Z a.s and
the unicity is proved.

Going back now to the definition of E[Y |X], we know that it means that for every A ∈ σ(X),
we have that :

E[Y 1A] = E[E[Y |X]1A]. (A.12)

Moreover, the set L2(X) correspond to the space L2 on the probability space (Ω, σ(X),P)
which is a closed space. Therefore, L2(X) is a closed vector subspace of L2 and following the
property of the Lemma A.2 which verifies E[Y |X] by his definition A.12 and the fact that
E[Y |X] ∈ L2(X) and 1A ∈ L2(X), we must have that E[Y |X] is the orthogonal projection of
Y ∈ L2 on σ(X) which ends the proof.
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Proposition A.5. Martingale Representation Theorem
Let’s consider a probability space (Ω,F ,P) and W a n-dimensional Brownian motion on

this space such that W = (W 1,W 2, . . . ,W n) ∈ Rn with for each i ∈ [[1;n]],W i is a standard
1-dimensional Brownian motion and for each i ̸= j, W i and W j are independant. We also
suppose that the space is filtered by the canonical filtration generated by W meaning that Ft =
σ((Ws)s≤t) ∀t ≥ 0.
Let T > 0 and M = (Mt)t∈[0,T ] a squared adapted integrable martingale valued in R with M0 ∈ R
defined on the filtered probability space. Therefore, there exists a unique constant c and a unique
progessif process ϕ = (ϕt)t∈[0,T ]

20 such that :

Mt = c+

∫ t

0

ϕT
s dWs, P− a.s. (A.13)

Moreover, we have that c =M0 and E[
∫ T

0
∥ϕt∥2dt] < +∞.

The proof of this really important result is based on the following lemma which is a more
general case of the martingale decomposition on a brownian filtration.

Lemma A.3. We consider the same setup as in the proposition. Let T > 0 and ξ ∈ L2(FT ).
Therefore, there exists a unique constant c = E[ξ] and a unique progressif process ϕ = (ϕt)t∈[0,T ]

valued in Rn with E[
∫ T

0
∥ϕt∥2dt] < +∞ such that

ξ = c+

∫ T

0

ϕT
t dWt, P− a.s. (A.14)

Proof. We start by the unicity by supposing that the existence has been proved. By taking
t = 0 in equation A.13, it’s clear that c is unique and equals to M0. Let’s now consider another
progressif process ψ = (ψt)t∈[0,T ] such that we have :

Mt = c+

∫ t

0

ψT
s dWs, P− a.s.

The result therefore follows from the unicity in the decomposition of an Itô Process from the
previous Lemma leading to the equality of the processes ϕt = ψt 0 ≤ t ≤ T, ds⊗ dP.
For the existence, we will refer to the previous lemma applied to the random variable MT which
is by assumption FT -adapted and squared integrable. Therefore, there exists (ϕ = (ϕt)t∈[0,T ] ∈
L2([0, T ]) such that we have :

MT = E[MT ] +

∫ T

0

ϕT
s dWs, P− a.s. (A.15)

As the process ϕ is ∈ H2([0, T ], the process
∫ t

0
ϕT
s dWs defines a true martingale and by taking

the conditional expectation with respect to Ft in A.15, we therefore have that :

EQ[MT |Ft] =M0 + E[
∫ T

0

ϕT
s dWs|Ft], P− a.s

Mt =M0 +

∫ t

0

ϕT
s dWs, P− a.s. (A.16)

Therefore, the existence is proven with c =M0 and wih ϕ ∈ L2.

20A process ϕ is said to be progressively measurable if ∀t ≥ 0 the application X defined on [0, t] × Ω by
X(s, w) = ϕs(w) is B([0, t])×Ft-measurable
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B A quick introduction to discretization schemes
In this annex, we will discuss a bit around the discretisation schemes as we make an heavy use
of them in this dissertation. For this, we will consider a probability space (Ω,F ,P) and W
a one-dimensionial brownian motion. We now consider a process X = (Xt)t∈[0,T ] valued in R
given by the following SDE :

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 ∈ R.

Let’s now consider a timegrid π over [0, T ] defined by :

π = {0 = t0 < t1 < . . . < tN = T}. (B.1)

Remark. In this dissertation, we used an equidistant timestep h = T
N

such that tn = nh.

Definition B.1. An Euler approximation of the equation B.1 associated with the timegrid
π is a discrete time process Xπ = {Xπ

t | t ∈ π} defined by the following iterative scheme
∀n ∈ [[0;N − 1]] :

Xtπn+1
= Xtπn + b(tn, X

π
tn)(tn+1 − tn) + σ(tn, X

π
tn)(Wtn+1 −Wtn), Xπ

0 = X0 (B.2)

Remark. Wtn+1 −Wtn is a Gaussian random variable with zero mean and variance given by
tn+1 − tn = h. To generate the increments Wtn+1 −Wtn, we can therefore use a sequence of
independant variables (Gi)i≥1 ∼ N (0, h) as increments of a brownian motion are independant.

The main result about the Euler discretization scheme is given by the following proposition
which gives the rate of convergence of Xπ towards the true solution X.

Proposition B.1. Assume b and σ continous and lipschitz functions in t and x, then we have
the following error control :

E[ sup
t∈[0,T ]

|Xt −Xπ
t |2] ≤ C|π|. (B.3)

where |π| = maxn∈[[0;N−1]] tn+1 − tn and C > 0 a constant which doesn’t depend in |π|.

Remark. In this dissertation, we used the Euler scheme when we had to discretize diffusion
processes but other choices could have been done to improve the rate of convergence. 21 For the
case of the CIR process where the SDE is given with the following choices of b and σ :

• b(t, x) = κ(θ − x) with (κ, θ) ∈ R+ × R.

• σ(t, x) = σ
√
x with σ ∈ R+.

There could be an issue in the discretization scheme over a timegrid π due to the brownian
increment term becoming negative. Therefore, we used in this dissertation a well known scheme
for CIR process in the litterature called the Symmetrized Euler 22 scheme given by :

Xtπn+1
= |Xtπn + b(tn, X

π
tn)(tn+1 − tn) + σ(tn, X

π
tn)(Wtn+1 −Wtn)|, Xπ

0 = X0. (B.4)

21For instance, the Milstein scheme is another discretization scheme which can improve the rate of convergence
of Xπ towards X.

22There exists a lot of other scheme discussed in the litterature. For instance see [36].
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C An introduction to neural networks
In this annex, we will make an overview of the most famous Deep Learning algorithm : Neural
Networks asas we used them in some of the supervised learning algorithms we present in this
dissertation. We will focus on the most common architecture of neural networks : the so called
Feed Forward Neural Networks (FFNN) or Fully Connected Networks (FCN). There exists a
lot of other architectures in the litterature such as :

• Convolutional Neural Networks (CNN) which are well suited for image processing

• Recurrent Neural Networks (RNN) which are used for sequentiel data like time series.

Presentation of FFNN

Architecture of a Neural Network

A feedforward neural network is a parametric function f(.θ) : RN0 → RNM defined as the
composition of functions called layers and can be defined as follows :

f(., θ) = L(M) ◦ . . . ◦ L(1).

Each (L(m))m∈[1,M ] constitues a layer and can be defined as follows :

L(m): RNm−1 → RNm

x 7→ ϕm(W
(m)x+ b(m)).

with :

• ϕm : R → R is called activation function of the layer m. Here in the definition,
it’s an ease of notation to define for a vector x = (x1, . . . , xNm) ∈ RNm , ϕm(x) =
(ϕm(x1), . . . , ϕm(xNm)).

• W (m) ∈MNm×Nm−1(R) is the weight matrix of the layer m.

• The vector b(m) ∈ Rm is called the bias of the layer m.

• The dimension Nm defines the number of neurons of the layer m.

• The parameter θ describes all the parameters of the neural network , biais and weights
such that θ = (W (1), b(1), . . . ,W (M), b(M)) is a vector of dimension

∑M
m=1Nm(Nm−1 + 1).

In this definition of a FFNN, there is one input layer L(1) which will be fed with the inputs
of the user and there is one output layer L(M). Both dimensions are fixed before defining a
FFNN. The other layers defined in the architecture are usually called hidden layers and help to
connect the data between them. For example, a neural network with no hidden layer is called
a Perceptron and is the easier architecture you can build for a neural network. In the case of a
neural network with multiple layers, it’s common to call it a Multi Layer Perceptron.

Remark. The output dimension NM can either be unidimensional or multidimensional de-
pending on the problem. For instance, in this dissertation we used neural networks in both
unidimensional and multidimensional settings.

Let’s focus a bit now on the activation functions (ϕm)m∈[[1;M−1]] as they are an important
part of the architecture of a neural network. We will cite some of the most used activations
functions in the litterature.
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• The identity function such as ϕ(x) = x which doesnt’t bring a nonlinearity.

• The sigmoid function such as ϕ(x) = 1
1+e−x used in classification problems as it returns a

value between 0 and 1.

• The Hyperbolic tangent function such as ϕ(x) = ex−e−x

ex+e−x

• The ReLu function such as ϕ(x) = max(x, 0) = x+ which is one of the most used activa-
tion functions in the litterature but whose gradient is 0 for negative values.

• The LeakyRelu function of parameter α such as ϕα(x) = x1x>0 + αx1x≤0 which allows a
gradient value non zero for negative values.

The use of neural networks has been increased tenfold in recent years because of power of
computers as well as efficient ecosystems such as Tensorflow or PyTorch who can help us to
create Neural Networks from scratch easily.

Figure C.1: Neural network architecture with an input vector ∈ R6 with 5 hidden layers and
with an output layer ∈ R2.

The Universal Approximation Theorem

The main result which explains the popularity of neural networks is the universal approximation
theorem. We will give a version of the theorem for the case of a bounded and smooth function
f : Rd → R but the theorem can be extended to the multidimensional case.

Theorem C.1. 23 Consider ϕ a bounded function, continous and non increasing function.
Consider K a compact in the space Rd and C(K) the space of the continuous functions on K.
Let f ∈ C(K). Then ∀ϵ > 0, there exists N ∈ N real numbers ai, bi and Rd-vectors wi such
that by defining the function F as follows :

F (x) =
∑N

i=1 aiϕ(⟨wi, x⟩+ bi).

23The proof of this theorem can be found in [37] Multilayer feedforward networks are universal approximators
by Kur’ Hornik published in 1988
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we have :

supx∈K∥F (x)− f(x)∥ < ϵ.

Some remarks on the theorem :

From a theoretical point of view, this result is particularly interesting because it says that any
continuous function f can be approximated by a neural network with one hidden layer with a
finite number of neurons with the same activation function ϕ.
From a practical point of view, this result lacks of interest because it doesn’t provide any idea
about the number of neurons we have to consider to approximate f with a certain level of
confidence ϵ. In practice, as the number N of neurons can be very large, it’s prefereable to
consider multi-layer neural networks.

The Training process of a NN

The training process of a neural network is the most crucial step if we aim to find the optimal
paremeter θ to achieve a good accuracy. As always in a supervised machine learning algorithm,
we will assume that we are able to sample (Xi, Yi)i∈N independant copies of an unknow dis-
tribution µ who generates (X, Y ). The aim will be to minimize a criterion or a loss function
called l over the parameter θ which leads to the following minimization problem.

min
θ

E(X,Y )∼µ[l(f(X, θ), Y )]. (C.1)

As, µ is unknown, we will approximate the quantity E(X,Y )∼µ[l(f(X, θ), Y )] by his empirical
counterparty assuming being able to have N samples (Xi, Yi)i∈[1,N ] following the law of large
numbers.

E(X,Y )∼µ[l(f(X, θ), Y )] ≈ 1
N

∑N
i=1 l(f(Xi, θ), Yi).

As for every supervised learning algorithm, the entire dataset can be divided either in 2 ways:

• Training, validation and test data if you need to perform hyperparameters tuning and/or
model selection.

• Training and test data otherwise.

As we won’t focus on hyperparameter tuning in this dissertation, we won’t use a validation test
and we will refer equivalently to validation test as the test data in all this dissertation.
The training dataset which represents usually 80% of the entire dataset where we will try to
learn the optimal θ which minimizes our problem and the remaining 20% for the test data on
which we will test the accuracy of the model.
The loss l defines the type of metric we have to choose in order to check the accuracy of the
model. We give below the main metrics we used in this dissertation as the most common loss
we deal with is the Mean Squared Error (MSE ).

• MSE orRMSE defined asMSE(y, ŷ) = 1
n

∑N
i=1(yi−ŷi)2 andRMSE(y, ŷ) =

√
MSE(y, ŷ).

• MAE defined MAE(y, ŷ) = 1
n

∑n
i=1 |yi − ŷi|.

where if we note θ̂ as the actual solution of our minimization problem, we then have ŷi = f(xi, θ̂)
where f is the neural network we defined from the previous section and yi is the actual value.
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Intialization of parameters of the NN

During the training of the neural networks, the vector θ needs to be initialized and then
updated at each step of the training process. It has been seen in the litterature that this
initialization is particularly important and can lead to problem during the training phase as
the gradient can either vanish or explode. Here are the most common techniques to initialize
the parameters of the NN :

• Uniform or Normal Initialization.

• Xavier/Goriot Initalization.

In the Xavier/Goriot Initialization, each weight (W (m))m∈[1,M ] from each layer m is assumed
to follow the following distribution W (m) ∼ N (0, 2

Nm−1+Nm
) and b(m) is initialized at 0. We used

mostly the Xavier/Goriot initialization in the next chapters of this report as it is the most
common practice allowing to avoid vanishing or exploding gradients in the training process.

The learning algorithm : Gradient Descent

As we said we aim to find θ which solves our minimization problem, we will refer to the
classical gradient descent algorithm which is the way most popular algorithm to find minima
of functions.

Here is below the algorithm for the classical gradient descent algorithm.

Algorithm C.1 Gradient descent algorithm
Input Parameters : θ0 defined from the previous section, ϵ tolerance threshold, sequence
(ρn)n∈N of learning rates, k = 0

while ∥∇θl(x, y, θk)∥2 ≥ ϵ do
θk+1 = θk − ρk∇θl(x, y, θk)
k = k + 1

end
Output Parameters : Parameter θ optimized

As we can see from the algorithm, it is required to calculate the gradient of the loss with
respect to θ but also to define an appropriate learning rate sequence (ρn)n∈N. Indeed, the
learning rate is a particularly important hyperparameter in the Gradient Descent algorithm as
it can either not converge or even diverge. Let’s illustrate the concept on the figure below.

Figure C.2: Learning rate impact in the gradient descent algorithm
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As we can see from Figure C.2, choosing an appropriate learning rate sequence is particularly
important. If it’s "too high", we see that it will fail to converge to the actual global minimum
to the function. But if it’s "too low", the algorithm looks unefficient as it will take too much
steps to actually converge and it can also end stuck in a local minima.

As we said, we also need to calculate the gradient of the loss with respect to θ at each
timestep of the algorithm. However, in practice, the Gradient Descent Algorithm is slightly
modified in the way they compute the actual gradient. We give the most popular methods
below :

• Batch Gradient Descent : In this version of the Gradient Descent algorithm the
gradient ∇θl(x, y, θk) is calculated over all the training samples as follows where NTrain

defines the number of samples we have in the training dataset.

∇θl(x, y, θk) =
1

NTrain
∇θ

∑NTrain

i=1 l(xi, yi, θk).

As we can see, this method is computationally intense as at each step, we need to calculate
the gradient over all the training dataset and this is not the choice which is done in practice
when NTrain becomes too big.

• Stochastic Gradient Descent : In this version of the Gradient Descent algorithm,
the gradient ∇θl(x, y, θk) is calculated over the gradient on one unique sample from the
training dataset choosen randomly from the data at the timestep k. Let’s note by (xk, yk)
the choosen sample, then the gradient is calculated as follows :

∇θl(x, y, θk) = ∇θl(xk, yk, θk).

The convergence of the Stochastic Gradient Descent can look surprisingly as it requires
only one sample at each iteration of the Gradient Descent but it has been show that under
convex minimization that it converges almost surely to a local minimum under a suitable
choice of the learning sequence rate (ρn)n∈N.

The main advantage of this algorithm is his speedness and his low memory required but
his main disadvantage is the accuracy of the actual minimizor as the gradient is calculated
over one random sample from the entire dataset at each step of the algorithm.

• Mini Batch Gradient Descent : The Mini Batch Gradient Descent is a mix between
Batch Gradient Descent and Stochastic Gradient Descent. Indeed, we define a batch-size
1 < M < NTrain which defines the number of samples on which the gradient will be
performed at each step of the algorithm. The gradient is therefore calculated as follows :

∇θl(x, y, θk) =
1
M
∇θ

∑M
i=1 l(xi, yi, θk).

This method is the most used in practice as it is a good comprise between a good accuracy
given by the Batch Gradient Descent method and the computationally efficiency given by
the Stochastic Gradient Descent.

However, in practice there is not an optimal batch-size M . It will highly depend from the
dataset structure and the neural network architecture.

In the implementation, we used the Adam optimizer which is currently the most used
optimizer and who is seen has an improved version of the classic SGD. Indeed, the Adam
Optimizer allows to maintain a learning rate for each network parameter who is separately
updated during the learning process. This learning rate is estimated following an estimation of
the 2 first moments of the gradient. The parameters are updated as follows :
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gk = ∇θl(x, y, θk)
mk+1 = β1mk + (1− β1)gk
vk+1 = β2vk + (1− β2)g2k

θk+1 = θk − α mk

1−βk+1
1

1√
vk

1−βk+1
2

+ϵ
.

with (β1, β2) ∈ [0, 1[2, ϵ and α which are default parameters and initialization m0 = v0 = 0.
Classical values for β1, β2, ϵ and α are respectively 0.9, 0.999, 10−8 and 0.001.

The backpropagation principle

We will now focus on the actual way of how gradients are calculed to be applied in the Gradient
Descent Algorithm. As we said, we need to be able to calculate the gradient of the loss function
over the parameter θ = (W (1), b(1), . . . ,W (M), b(M)).

As we can see, it can be really challenging to calculate the gradient of the loss function
over each parameter of the NN but the idea behind neural networks is to use the chain rule to
efficiently calculate the gradients. This approach allows in only one pass from the output layer
to the input layer to compute the gradients of the loss function of every parameter and that’s
why neural networks can be efficiently used. If gradients of each parameter were calculated
separately, it would make the optimization problem impossible in practice. 24

24See https://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf which explains for a sim-
ple neural network architecture how gradients are calculated efficiently using backpropagation principle.
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D Another deep PDE solver : The Deep Galerkin algo-
rithm

The Deep Galerkin method has been introduced in [24] in 2018 by Sirignano and Spiliopoulous
in their publication DGM: A deep learning algorithm for solving partial differential equations
in order to solve partial differential equations in a general setting. Let’s consider u an unknown
function defined on the region [0, T ] × Ω where Ω ⊂ Rd with d ∈ N∗. We assume that u is
solution of the following PDE with L a generator :

(∂t + L)u(t, x) + f(t, x) = 0 ∀(t, x) ∈ [0, T [×Ω.
u(T, x) = g(x) ∀x ∈ Ω.

The idea of the Deep Galerkin is to approximate the function u by a neural network
parametrized by θ namely uθ such that we have uθ ≈ u by trying uθ by "forcing" u to verify
the PDE of which he is solution. For this, we will define the following :

• 2 random variables τ and X which are respectively defined on [0, T ] and Ω.

• We will have one error term L1
θ in the loss which characterizes the fact that uθ has to

verified the PDE on [0, T [×Ω

• We will have a second error term L2
θ in the loss which characterizes the terminal condition

for uθ

Therefore, we can define L1
θ and L2

θ as follows :

L1(θ) = E[(∂t + L)uθ(τ,X ) + f(τ,X )2].
L2(θ) = E[(uθ(T,X ))2].

Therefore, we will look for the following optimisation problem where Lθ = L1(θ) + L2(θ)

θ∗ = argminθL
θ. (D.1)

Some remarks on the Deep Galerkin algorithm :

• For the Deep Galerkin, the choice of the sampling of τ and X is particularly crucial.
Indeed, as the learning process is based of the samples of τ and X , if we want the neural
network to approximate as much as possible the solution of the PDE, we therefore need
to choice adapted distributions for τ and X .

• The Deep Galerkin is well suited for high dimensional problems as the learning process
goes from random sampling of (τ,X ). It can therefore overcome the classic curse of di-
mensionnality issue when we are dealing with finite difference methods when the meshgrid
grows exponentially with the dimension of the risk factors.

• In the following, we will just focus on computing CV A and FV A for financial contracts
on one underlying risk factor and illustrate how this method could possibly be used for
XV A computations. We will also show how the method can be used for an efficient
derivatives pricing setup.

150



D Another deep PDE solver : The Deep Galerkin algorithm

Numerical Results :

We now illustrate the use of the Deep Galerkin Algorithm in the pricing of the CV A on an
european call and FV A profile for a forward contract under B−S and we will rely on the same
PDEs as we derived in (6.12) for CV A and FV A.
For the sampling choice of (τ,X ), we decided to sample the distribution on an uniform meshgrid
for both variables as we are in a low dimensionnal setting with 100 points for τ on [0, T ] and
100 points for X on [20, 200]. For convenience, we rewrite below the associated PDEs.

∂tϕ
CV A(t, x) + LϕCV A(t, x)− (rt + λCt )ϕ

CV A(t, x) + (1−RC)(Vt)
+λCt = 0, ∀(t, x) ∈ [0, T [×R+

∗

ϕCV A(T, .) = 0, ∀x ∈ R+
∗

∂tϕ
FV A(t, x) + LϕFV A(t, x)− (rt + λCt + λAt )ϕ

FV A(t, x) + (sbt(Vt)
+ − sLt (Vt)−) = 0, ∀(t, x) ∈ [0, T [×R+

∗

ϕFV A(T, .) = 0, ∀x ∈ R+
∗

We will assume a B − S model and we give in the table below the parameters used in the
numerical experiments:

Table D.1: Parameters used in the Deep Galerkin Method illustrations

Parameters r σ K
Value 0.02 0.2 100
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Learning the CVA profile of an european call with λC = 0.4 and RC = 0 :

Figure D.1: CV A(t, St) surface for an european call with the following parameters : (λC = 0.4
and RC = 0)

Figure D.2: Projection of the CV A surface of an european call on t = 0 with in red line the
M − C estimation of CV A(0, S0) with the following parameters : (λC = 0.4 and RC = 0)

Some remarks on the result :

• As we can see from the red line which represents the M −C estimation , the accuracy of
the Deep Galerkin is quite good as it replicates the value on t = 0.

• As we can observe from the CV A surface profile, there is quite an error on the terminal
value of CV A which is supposed to be equal at 0 but overall the Deep Galerkin seems to
perform well.
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Learning the CVA profile of an european call with λC = 0.1 and RC = 0 :

Figure D.3: CV A(t, St) surface for an european call with the following parameters : (λC = 0.1
and RC = 0)

Figure D.4: Projection of the CV A surface of an european call on t = 0 with in red line the
M − C estimation of CV A(0, S0) with the following parameters : (λC = 0.1 and RC = 0)

Some remarks on the result :

• We have globally the same conclusions than the previous example except that for the
learning of CV A(T, .) which seems to be better as the function seems to be really close
to 0 in this case.

• We can also observe that when λC = 0.1, the overall CV A is reduced as the intensity
default of the counterparty is lower than in the previous example.
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Learning the FVA profile of a forward contract with sB = 0.02 and sL = 0 :

Figure D.5: FV A(t, St) surface for a forward contract with the following parameters : (sB =
0.02, sL = 0, λC = 0.4 and λA = 0.1)

Figure D.6: Projection of the FV A surface of a forward contract on t = 0 with in red line the
M −C estimation of FV A(0, S0) with the following parameters : (sB = 0.02, sL = 0, λC = 0.4
and λA = 0.1)

Some remarks on the result :

• In the case of the FV A surface learning, we have similar results when we set sL = 0 which
means that FBA = 0 so we expect a similar profile than to the CV A which is something
that we end up with. The red line Monte-Carlo allows to assess the learning of the FV A
surface for the forward contract.
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Learning the FVA profile of a forward contract with sB = 0.02 and sL = 0.02 :

Figure D.7: FV A(t, St) Surface for a forward contract with the following parameters : (sB =
0.02, sL = 0.02, λC = 0.4 and λA = 0.1)

Figure D.8: Projection of the FV A surface of a forward contract on t = 0 with in red line the
MC estimation of FV A(0, S0) with the following parameters : (sB = 0.02, sL = 0.02, λC = 0.4
and λA = 0.1)

Some remarks on the result and the method :

• In this setting, we set sL = 0.02 such that FBA ̸= 0 and therefore we can have negative
FV A. We see in this case that the learning of the FV A is not that good with some error
for low values of S as we can see from the red line M−C estimation. Moreover, the value
for terminal T is close to 0 but it can be improved.

• In a PDE approach, the Deep Galerkin Method can be a good alternative to the Deep
XVA Solver as it is a more straightforward approach and easier but the accuracy of the
neural network solution is still a challenge that needs to be improved.
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Learning the surface profile of an european call under B − S :

Figure D.9: V (t, St) price surface for an european call

Figure D.10: Projection of the price surface of an european call on t = 0 with in red line the
MC estimation of V (0, S0)

Some remarks on the result :

• In this setting, we see that the Deep Galerkin performs really well in reproducing the
price surface of the european call V (t, St) with the red line representing the M −C price
being really close to the estimate of the Deep Galerkin.

• The Deep Galerkin looks to be a good candidate for the first loop in the XV A nested
M−C computation as we can use the price of the derivative learned by the Deep Galerkin
on the whole surface (t, s) ∈ [0, T ]×D where D denotes here the interval [20, 200].
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Learning the surface profile of a forward contract under B − S :

Figure D.11: V (t, St) price surface for a forward contract

Figure D.12: Projection of the price surface of a forward contract on t = 0 with in red line the
MC estimation of V (0, S0)

Some remarks on the result :

• In this setting, we see that the Deep Galerkin performs really well in reproducing the
price surface of the forward contract V (t, St) with the red line representing the M − C
price being really close to the estimate of the Deep Galerkin. Moreover, we see from the
price surface of the forward clearly the Delta One structure of the forward.

• The Deep Galerkin looks to be a good candidate for the first loop in the XV A nested
M−C computation as we can use the price of the derivative learned by the Deep Galerkin
on the whole surface (t, s) ∈ [0, T ]×D where D denotes here the interval [20, 200].
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E Additional plots

LSMC Plots for Bermudan Options

Figure E.1: Computation of the expected exposure profile of a bermudan call under B − S
model with the following parameters : (S0 = 100, K = 100, r = 0.04, q = 0, σ = 0.2, T = 1
and N = 13)

Figure E.2: Computation of the expected exposure profile of a bermudan call under B − S
model with dividends and with the following parameters : (S0 = 100, K = 100, r = 0.04,
q = 0.10, σ = 0.2 , T = 1 and N = 13)

Some remarks on the result :

• We can see the impact of the dividend q on the EPE profile of a bermudan. As it is well
known under the B − S model, it’s never optimal to exerce an american / bermudan call
option when r − q > 0 as we can see from the figure above.

• Moreover, as we mentioned when q = 0.10, we see that the bermudan call option price is
different from his european version and being superior at t = 0 which is expected.
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Figure E.3: Computation of the expected exposure profile of a bermudan max call on 2 assets
under B − S model for different ρ with dividends and with the following parameters : (S1

0 =
S2
0 = 100, K = 100, r = 0.04, q1 = q2 = 0.10, σ1 = σ2 = 0.2, T = 1 and N = 13)

Some remarks on the result :

• As we can see from the plot above, the price of the max call option is a decreasing function
of ρ which is expected from the intuition of the payoff structure (maxi∈{1,2} S

i
T −K)+

• We also recover that the price of the bermudan option is higher at t = 0.
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Figure E.4: Computation of the expected exposure profile of a bermudan min put option on 2
assets under B − S model for different ρ with dividends and with the following parameters :
(S1

0 = S2
0 = 100, K = 100, r = 0.04, q1 = q2 = 0.10, σ1 = σ2 = 0.2, T = 1 and N = 13)

Some remarks on the result :

• As we can see from the plot above, the price of the Min Put option is a decreasing function
of ρ which is expected from the intuition of the payoff structure (K −mini∈{1,2} S

i
T )

+

• We also recover that the price of the bermudan option is higher at t = 0.
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Neural networks learning process

Figure E.5: Learning processes of neural networks for various european options from plots of
chapter 5
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Hedging strategies in an Heston model

We consider the case of a more sophisticated model to show that the hedging strategy still can
be computed. 25 We consider the case of european call and put which we will assume to price
using 2000 = MC Paths with N = 100 discretization time steps. We recall that the Heston
model is given by the following dynamics :

dSt = St(rdt+
√
vtdW

1
t ), S0 ∈ R+

∗ .

dvt = κ(θ − vt)dt+ σ
√
vtdW

2
t , v0 ∈ R+

∗ .

d < W 1,W 2 >t= ρdt.

We give in the table below the parameters used in the numerical experiments for both cases.

Table E.1: Parameters used in the numerical experiments in the Mean Variance Minimizing
strategy in the Heston model

Parameters ξ λ r κ θ σ S0 v0 ρ K
Case 1 0.5 0.2 0 0.5 0.15 0.02 100 0.2 −0.9 100
Case 2 0.5 0.2 0 0.5 0.15 0.02 100 0.1 −0.9 100

Figure E.6: Comparison of 2 hedging strategies in order to hedge the CCR on a call option
under Heston model in Case 1

Figure E.7: Comparison of 2 hedging strategies in order to hedge the CCR on a call option
under Heston model in Case 2

25Doing the computation shows that the optimal hedging strategy as the same form in the Heston Model
than in the B−S version. Therefore, we only need to price the financial product under Heston to compute the
optimal strategy
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Table E.2: Norm 2 of eT in case of an european call in the Heston model

No Hedging Dynamic Hedging
E[(eT )2] in Case 1 501.64 89.19
E[(eT )2] in Case 2 212.98 28.26

We also provide some numerical results in the case of an european put under the Heston
model

Figure E.8: Comparison of 2 hedging strategies in order to hedge the CCR on a put option
under Heston model in Case 1

Figure E.9: Comparison of 2 hedging strategies in order to hedge the CCR on a put option
under Heston model in Case 2

Table E.3: Norm 2 of eT in case of an european put in the Heston model

No Hedging Dynamic Hedging
E[(eT )2] in Case 1 299.00 45.94
E[(eT )2] in Case 2 206.58 30.32

Some remarks on the results :

• As we see also when the market is more stressed corresponding to the first case with
v0 = 0.2, the tracking error is overall superior.

• We see that the tracking error eT is globally higher in the Heston model than in the
B − S model which can be explained due to the fact that we priced the options using
MC paths and not analytical formulas and also due to the relatively low number of MC
paths used. Moreover, we choose a value of θ which is the mean reversion equal to 0.15
which is relatively high so we expected more error in the Heston model.
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